
Chair of Mobile Business &
Multilateral Security

Business Informatics 2 (PWIN)
WS 2023/24

ICS Development I
Software Engineering

Prof. Dr. Kai Rannenberg

Chair of Mobile Business & Multilateral Security
Johann Wolfgang Goethe University Frankfurt a. M.

Lecture 08

1

Agenda

§ Introduction to Software Engineering

§ Software Engineering Process Overview

§ Software Development Process Models

2

What is Software?

§ What is software?
§ Computer programs and associated documentation.
§ Software is developed for a particular customer (individual

software) or for a general market (standard software).

§ What are the attributes of good software?
§ Good software is supposed to deliver the required

functionality and performance to the user and has to be
maintainable, reliable and usable.

3

Who Needs Software?

§ Most software used in organisations is built for people
with specific needs.

§ A stakeholder is anyone who has an interest (or a stake) in the
software.

§ A user is someone who uses the software in order to perform
tasks.

§ Sometimes stakeholders are users; but most of the time
stakeholders do not use software.

§ For example, a senior manager (e.g. CEO or CTO in a company)
usually has a stake in the software to be built, even if they are
never going to use it.

Source: Stellmann, Greene (2006)

4

Who Builds Software?

§ Software is typically built by a team of software
engineers, which include:

§ Business analysts or requirements analysts, who gather
requirements for a software by interviewing users and
stakeholders

§ Designers and architects, who plan, design, and model the
technical architecture and system of the software

§ Programmers, who write the code for the software

§ Testers, who verify that the software meets its requirements
and behaves as expected

Source: Stellmann, Greene (2006)

5

Why Do Software
Development Projects Fail?

§ People begin programming
before they understand the
problem.

§ The team has an unrealistic
idea about how much work is
involved.

§ Mistakes are injected early
but discovered late.

§ Managers try to “test” quality
into software.

Source: Stellmann, Greene (2006)

6

7

Why Do Software
Development Projects Fail?

How to Ensure That Software
Projects Succeed?

§ Application of “Good Engineering Practices”

§ Managers and teams often want to skip important engineering
practices – especially effort estimation, continuous reviews,
requirement acquisition and testing.

§ If it would be faster to build the software without these practices,
they would never be used.

§ The reason for applying these practices is to save time and increase
software quality by accurate planning and revealing mistakes early.

§ Not applying theses practices increasing development time while
reducing the software quality.

Source: Stellmann, Greene (2006)

8

Software Engineering (SE)

§ Software Engineering (SE) is a discipline that is concerned with all
aspects of software production from the early stages of system
specification and system design down to rollout and system
maintenance.

§ Engineering as discipline means applying appropriate theories and
methods to solve problems while considering organisational and
financial constraints.

§ Software Engineering covers all aspects of software production
§ Technical development process (main task)
§ Project management, development of tools, methods etc. in

order to support software production (supporting tasks)

Source: Sommerville (2007)

9

Important
Software Engineering Objectives

§ Development of software according to
specified quality standards

§ Avoidance of disastrous time delays and
exceed of budget

§ Addressing of changing requirements while
staying on budget and deadlines

10

ICT-Project Management vs.
Software Engineering

ICT-Project Management

Software Engineering

11

Software Project Planning

Vision and Scope Document

Software Project Plan

Project Schedule

Risk Plan

Project M
anagem

ent

12

Vision and Scope Document

§ One of the most important tools of a project manager
§ Enables that stakeholders and developers share a common

understanding of the needs – and the needs addressed by the
software

§ Typical document outline

1. Problem Statement
a) Project background
b) Stakeholders
c) Users
d) Risks
e) Assumptions

2. Vision of the Solution
a) Vision statement
b) List of features
c) Scope of phased release (optional)
d) Features that will not be developed

Source: Stellmann, Greene (2006)

13

§ Used by many people in an organisation
§ Project manager: Communication of project status to stakeholders,

planning of team activities
§ Team members: Understanding the context of their work
§ Senior manager: Verifying that costs and schedule are under control
§ Stakeholders: Ensuring the project is on track

§ Project plan consists of:
§ Statement of work (SOW): Describes list of features to be developed

and their required estimated effort
§ Resource list: List of all resources required for the project
§ Work breakdown structure: List of required tasks to develop the

software
§ Project schedule: Assignment of resources and calendar time to a

required task
§ Risk plan: Risks that could threaten the project and potential

means to mitigate these risks

Project Plan

Source: Stellmann, Greene (2006)

14

Developing a
Project Schedule (1)

1. Allocate resources to the task
2. Identify dependencies between tasks

Source: Stellmann, Greene (2006)

15

Developing a
Project Schedule (2)

3. Create a schedule

Source: Stellmann, Greene (2006)

16

Developing a
Project Schedule (3)

Project Schedule

Source: Stellm
ann, G

reene (2006)

17

Risk Plan

§ A risk plan is a list of all risks that threaten the
project, along with a plan to mitigate some or
all of those risks.

§ Building a risk plan
1. Brainstorming of potential risks
2. Estimate the impact of each risk
3. Make a mitigation plan

Source: Stellmann, Greene (2006)

18

Example of a Risk Plan

Source: Stellmann, Greene (2006)

19

Agenda

§ Introduction to Software Engineering

§ Software Engineering Process Overview

§ Software Development Process Models

20

Diversity of Software
Engineering Approaches

§ There are many different types of software and there is no
universal set of SE methods which is applicable to all of these.

§ The types of Software Engineering methods and tools to be
applied depend on
§ the type of application to be developed,
§ the requirements of the customer and
§ the background of the development team.

§ Examples for different software projects:
§ Adding new functions to ERP production system
§ Development of a proprietary standard software (e.g. Office suite)
§ Building of a website

21

Software Engineering Process

§ The Software Engineering Process is a structured set of activities
to develop a software.

§ Many different Software Engineering processes exist, but all of
them share the following aspects
§ Requirements Specification: Definition of the behaviour of a

software
§ Design and Implementation: Designing (e.g. modelling) and

implementing (e.g. programming/coding) the software
§ Validation: Evaluating the features of the software against the

specified requirements
§ Evolution: Modifying the software in response to changed

customer needs

22

Requirements Specification (1):
Software Requirements

§ Software requirements specify the desired behaviour of a
software.

§ Requirements analysts (or business analysts) generate software
requirements specifications through requirements elicitation.
§ Interviews with the users, stakeholders and anyone else whose perspective

needs to be taken into account
§ Observation of the users at work
§ Prototyping of software
§ ...

The gathered insights are summarised and send back to the users / stakeholders in
order to make sure everybody shares a common understanding about them.

§ Software requirements should be documented in a Software
Requirements Specification, which complies with the
corresponding IEEE Standard.

23

Requirements Specification (2):
Use Cases

§ A use case is a description of a specific interaction that a user may have
with a software.

§ Use cases are simple means for describing the functionality of a software.
§ Use cases do not describe any internal workings of the software, nor do

they explain how the software is going to be implemented.

Source: WikiCommons (2011)

24

Requirements Specification (3):
Functional vs. Non-Functional Requirements

§ Functional requirements define the explicitly perceptible
behaviour of a software.
§ Login,
§ Calculations,
§ Configuration Options,
§ Features (e.g. display of customer information)
§ ...

§ Non-functional requirements define characteristics of a software,
which do not affect its behaviour (software quality attributes).
§ Usability
§ Performance
§ Error handling
§ ...

25

Design & Implementation

§ Vision and Scope documents the needs of an
organisation.

§ Requirements specify the required behaviour
of software in order to satisfy those needs.

§ Design specifies how software requirements are
to be technically implemented.

26

Validation (1)

§ A test case specifies a user test in order to evaluate a
specific software behaviour.

§ Test cases are very similar to use cases as they provide
step-by-step instructions for the interaction between
the user and the software.

§ A test plan is an organised list of all required test
cases to run through in order to evaluation the
functionality of a software against its specified
requirements.

27

Validation (2)

§ A typical test case is outlined in a
table, and includes:

§ A unique name and number
§ A short description of the test

case
§ Preconditions which describe

the state of the software
before the test case

§ Steps that which make up the
interaction during the test

§ Expected Results, which
describe the expected state
of the software after the test
case was run through

28

Evolution

§ Change control is a method for implementing only those
changes that are worth pursuing while preventing
unnecessary or overly costly changes from derailing the
project.

§ Establishing a Change Control Board
§ Project manager
§ Important stakeholders
§ Designers, programmers, testers
§ …

§ Change Control Board decides which of the requested
changes are actually going to be implemented.

29

Example: Software Development Process for the
NATO Interoperable Submarine Broadcast

System (NISBS)

§ Requirements Specification:
“The primary mission of the NISBS is to provide the U.S. with a NATO-interoperable

message preparation, management, format and transmit capability. The NISBS
shall be capable of […]”

§ Design and Implementation:
„Prepare Source Code Record (SCR) and Executable Object Code Record (EOCR) in

accordance with 4.2 […]“

§ Validation:
“Evaluate test plans and tests against criteria: traceability to requirements, […]

appropriateness of test standards and methods used […]“

§ Evolution:
“[…] Assist with retirement or replacement of the system as needed.”

NOTE: In a software development plan each step is
described in extensive detail!

Source: Space and Naval Warfare Systems Center (ed.) (1999)

30

Agenda

§ Introduction to Software Engineering

§ Software Engineering Process Overview

§ Software Development Process Models

31

Plan-driven vs. Agile Software
Development

§ Plan-driven SD consists of processes in which all activities have
been planned in advance and progress is measured against this
plan.

§ In agile processes, planning is incremental and it is easier to
change the process to reflect changing customer requirements.

§ In practice, most practical processes include elements of both
plan-driven and agile approaches.

32

Software Development
 Process Models

§ Describe the development process by defining the process steps
and results

§ Define principles, methods and tools for the development process

§ Determine chronological sequence for planning, development and
implementation of projects

§ Are available in a wide variety of approaches

33

Classification of Process Models

§ Sequential model
§ Consecutive phases with an increasing granularity and

milestones as results of phases

§ Modified sequential models
§ Phases are interleaved with an increasing granularity

and milestones as results of phases

§ Evolutionary models
§ No phases with defined results. Instead iterative cycles

of “design, implementation and validation”

§ Agile models
§ Only a general framework for an approach, few rules,

very flexible, dynamic phases

flexible

pl
an
ne
d

34

Sequential Models

§ The waterfall model (first described by Royce in 1970)
§ There seem to be at least as many versions as there are authors -

perhaps more

35

Royce, 1970

Example of a Sequential Model:
NATO Interoperable Submarine

Broadcast System (NISBS)
OCD: Operational Concept
Document
SRS: System Requirements
Specification
SRD: Software Requirements
Description
UDD: User Documentation
Description
SRR: System Requirements
Review
SDD: Software Design
Description
SIDD: Software Interface
Design Description
SDR: Software Design Review
ITP/P: Integration Test
Plan/Procedures
ITR: Integration Test Report
TRR: Test Readiness Review
QTP/P: Qualification Test
Plan/Procedures
QTR: Qualification Test
Report
SUR: Software Usability
Review
SDP: Software Development
Plan
SCMP: Software
Configuration Management
Plan
SQAP: Software Quality
Assurance PlanBased on: Space and Naval Warfare Systems Center (ed.) (1999)

1.Software
Requirement
Engineering

SRR SDR TRR SUR

Code

OCD

SRS

SRD

UDD
SDD

SIDD

ITP/P ITR QTP/P QTR

Project Planning and Oversight

Software Configuration Problem

Software Quality Assurance

SDP

SCMP

SQAP

2.Software
Design

3.Software Unit
Development, Test,
Integration 4.System

Qualification Test
and Delivery

5.Support of
Installation and
Use

36

Sequential Models

§ One or more documents are produced after each phase
and on which one has to “sign off”.

§ Aspects worth mentioning:
§ “Water does not flow up” à It is difficult to change

an artifact produced in the previous phase.
§ Approach should only be used if requirements are

clear and well understood.
§ Reflects traditional engineering practice
§ Simple management approach

37

V-Model

§ Horizontal lines denote the information flow between
activities at the same abstraction level.

§ First proposal in 1979
Source: Clarus (2005)

38

V-Model

§ Similar to pure waterfall model, but makes the dependencies
between development and verification activities explicit.

§ The left half of the “V” represents development and the right half
system validation.

§ Note the requirements specification includes requirements
elicitation and analysis.

39

Evolutionary Models Example:
Spiral Model

Source: Marciniak (2002)

40

Evolutionary Model Example:
Spiral Model

§ Basic Concept
§ Develop an initial implementation, demonstrate it to user, get

feedback and refine it until an adequate system has been produced.

§ Two types of evolution models:
§ Exploratory
§ Throw-away prototyping

§ Advantages
§ Estimates for budget, schedule, etc. become more realistic as work

progresses

§ Disadvantages
§ Requires expertise in risk evaluation and mitigation
§ Appropriate only for large systems

41

Agile Models

§ Characteristics
§ Only a general development framework
§ Strong integration and interaction with the customer during the

development process
§ Short development cycles (e.g. 6-8 weeks)
§ Continuous change of project specifications / requirements
§ Direct and informal communication between the project participants
§ Little documentation
§ Requires a lot of discipline of all participants
§ Examples: eXtreme Programming, Scrum, Feature-Driven Development

§ To be applied under the following circumstances:
§ Specifications are uncertain and subject to continuous change
§ Innovative projects

42

Agile Models Example:
 Scrum

Source: Pressman (2005)
43

Agile Models Example:
 Extreme Programming

Source: www.extremeprogramming.org, 2011

44

Literature

§ Clarus (2005) “Concept of Operations”, Federal Highway
Administration (FHWA), Publication No. FHWA-JPO-05-072, 2005.

§ Extremprogramming (2011) http://www.extremeprogramming.org
§ Marciniak J. (ed.) (2002) ”Encyclopedia of Software Engineering”,

2nd. Edition, 993-1005, Wiley, 2002.
§ Pressman R, (2005) “Software Engineering: A Practitioner's

Approach”, Mcgraw Hill Book, 6th edition, 2005
§ Project Cartoon (2011) http://www.projectcartoon.com
§ Royce, W. (1970) "Managing the Development of Large Software

Systems", Proceedings of IEEE WESCON 26 (August): 1–9.
§ Sommerville I. (2007) „Software Engineering“, Pearson Studium, 8th

edition, 2007.
§ Stellmann, A.; Greene, J. (2011) “Applied Software Project

Management“, O‘Reilly Media Inc 2006.
§ Space and Naval Warfare Systems Center (ed.) (1999) „Software

Development Plan (SDP) for the NATO Interoperable Submarine
Broadcast System (NISBS)“, San Diego, 1999.

§ Royce, W. W. (1987, March). Managing the development of large
software systems: concepts and techniques. In Proceedings of the
9th international conference on Software Engineering (pp. 328-338).

45

