
Chair of Mobile Business & Multilateral Security

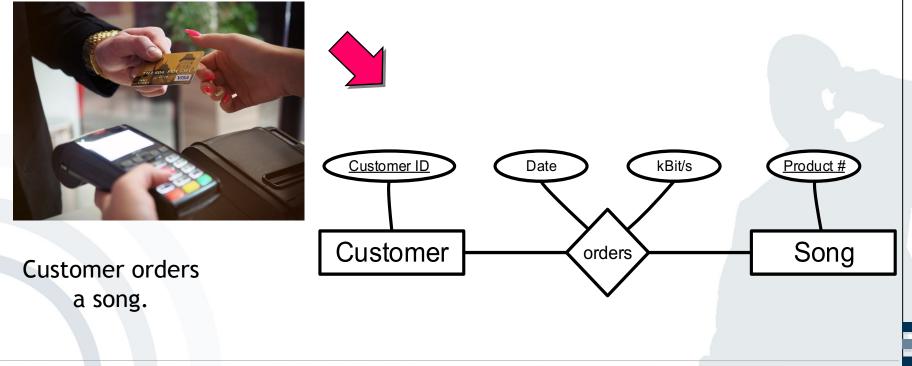
Mentorium 6 Business Informatics 2 (PWIN)

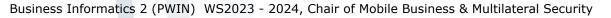
Databases & Data-oriented Modelling

SQL

Sascha Löbner M.Sc. www.m-chair.de

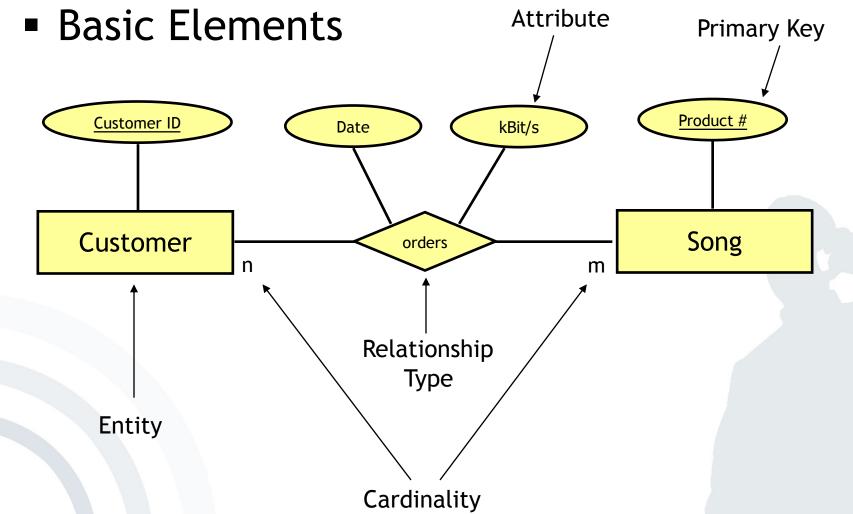
Jenser (Flickr.com)


Entity Relationship Model


SQL

Repetition: ERM

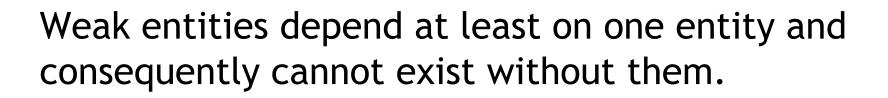
- Modelling of the problem statement from functional perspective
- Abstraction from technical aspects and implementations
- Different modelling concepts (e.g. ERM, SERM, ...) available

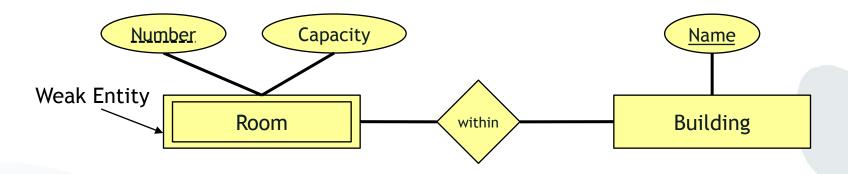


4

Repetition: ERM

Repetition: ERM


Cardinalities


- Cardinalities describe the number of relationship instances that an entity can participate in:
 - 1:1 (one-to-one), e.g. student student card (theoretically)
 - 1:n (one-to-many), e.g. university student (theoretically)
 - n:m (many-to-many), e.g. professor student (theoretically)

Intervals (min/max notation)

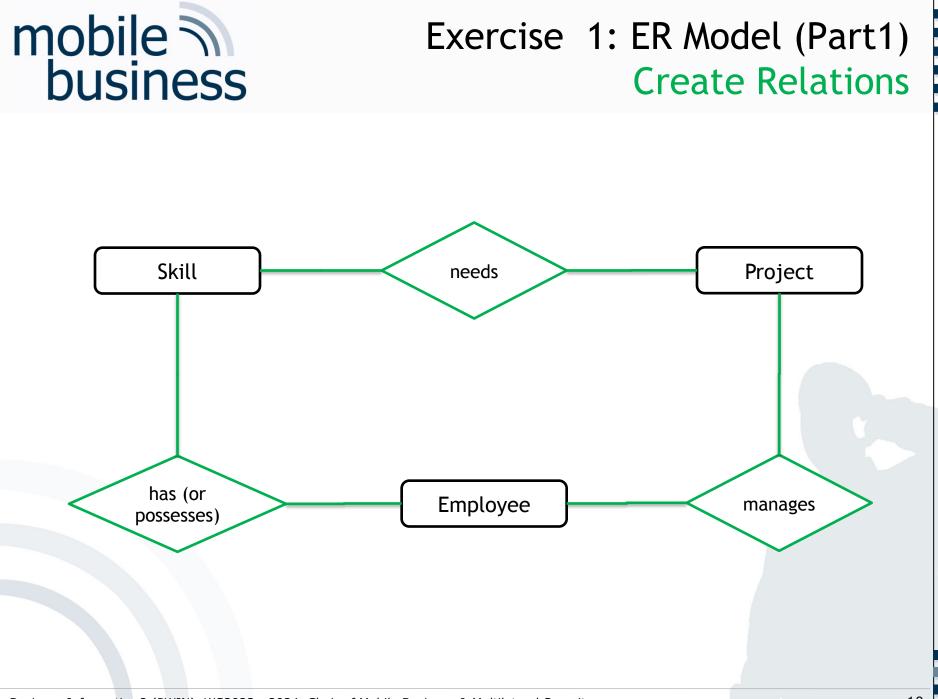
- Intervals allow specifying cardinalities more accurately.
- They specify that each entity participates in at least min and at most max relationship instances.

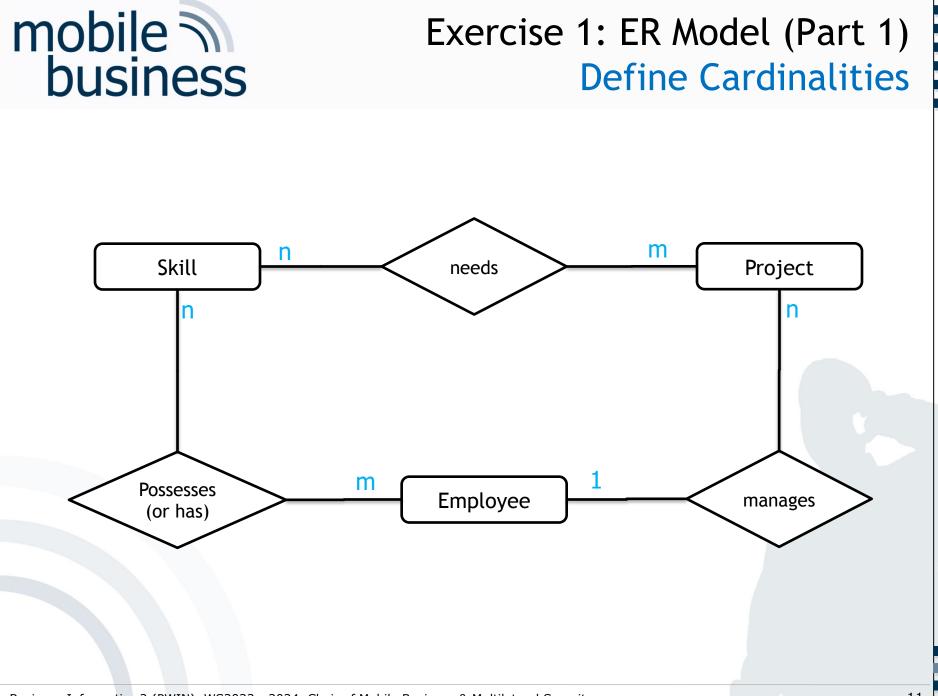
One cannot uniquely identify a room by its number, but with a combination of room number and name of a building.

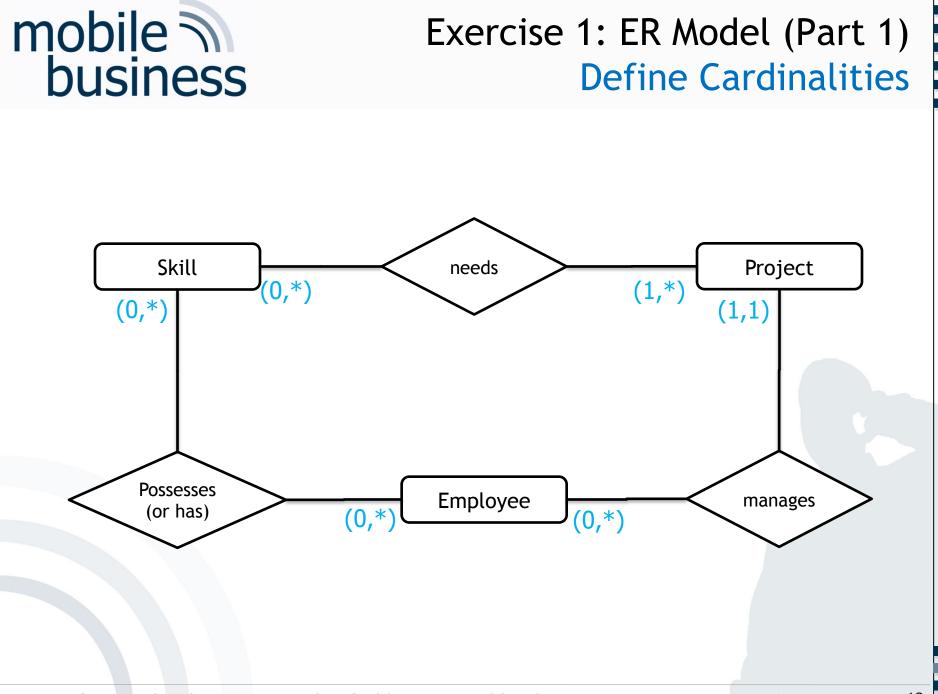
Exercise 1: Entity Relationship Model

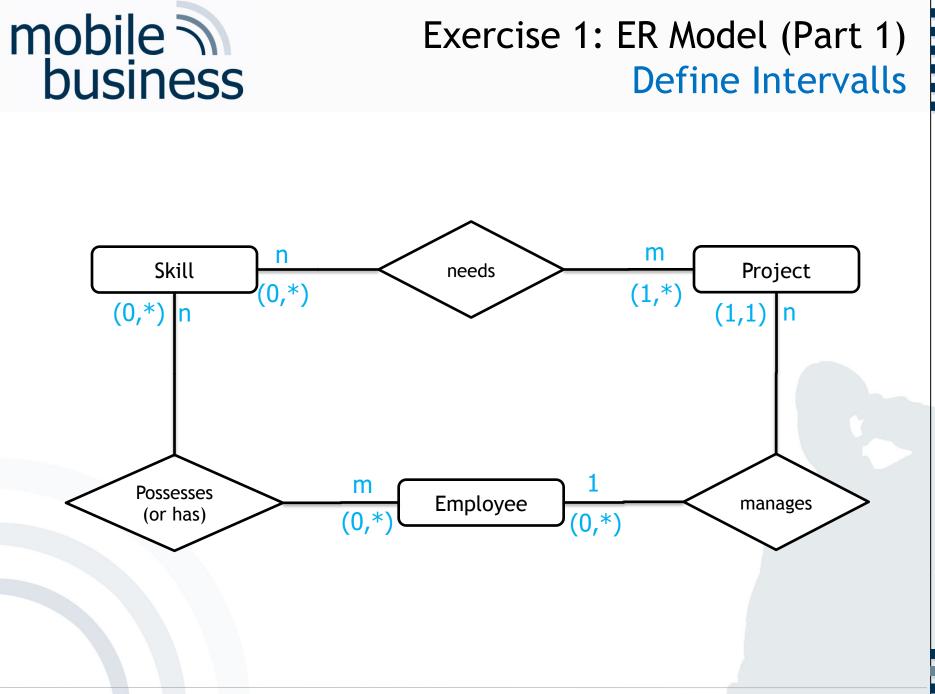
Exercise 1: ER Model (Part 1)

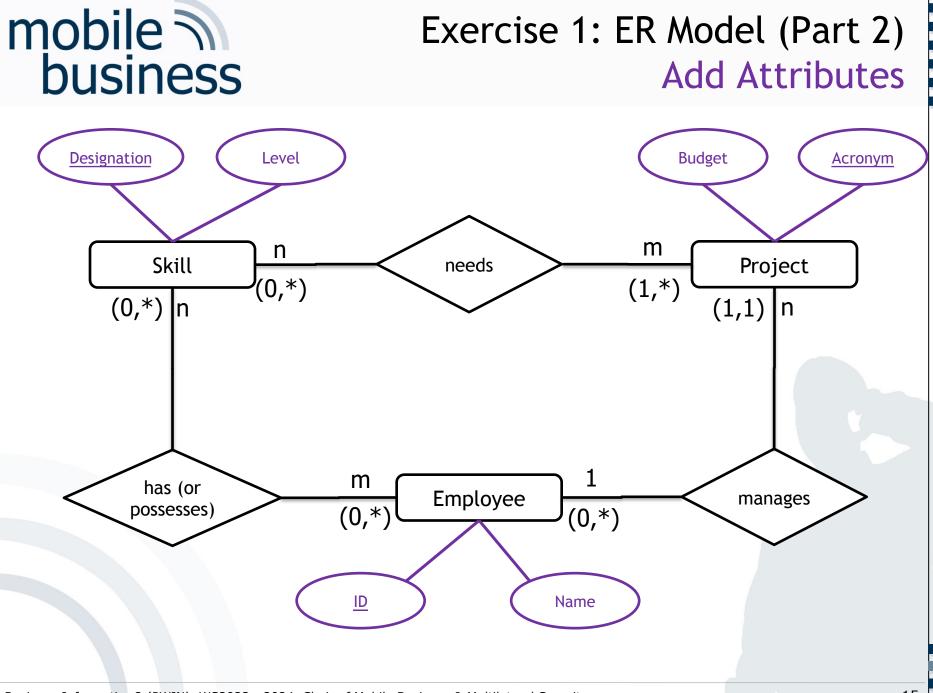
- Create an ER model which represents the following information.
 Specify the cardinalities of the relationships using both the n:m notation and the interval notation.
 - 1. A skill can be needed by many projects but might not be needed by any project. A project needs one or more skills.
 - 2. An employee can manage many projects. There are some employees who don't manage any projects. A project must be managed by an employee.
 - 3. An employee may have many skills but might not have any. A skill can be possessed by many employees. There are some skills that no employees possess.




Exercise 1: ER Model (Part 1) Define Entities







Exercise 1: ER Model (Part 2)

- Add attributes to entities with the help of the following information:
 - 1. A project has a unique acronym and a budget.
 - 2. An employee has an ID and a name.
 - 3. A skill is described by its designation and level.

Exercise 2: Entity Relationship Model

Mentorium 6,

Exercise 2: ER Model

Create an ER model of the InstaMatch® system.

- Identify and mark the primary key for each entity and avoid as far as possible artificial keys (e.g. ID).
- Define the cardinalities, using the <u>n:m notation</u>.
- Make explicitly use of weak entities.

mobile business

Use the following entities for your model:

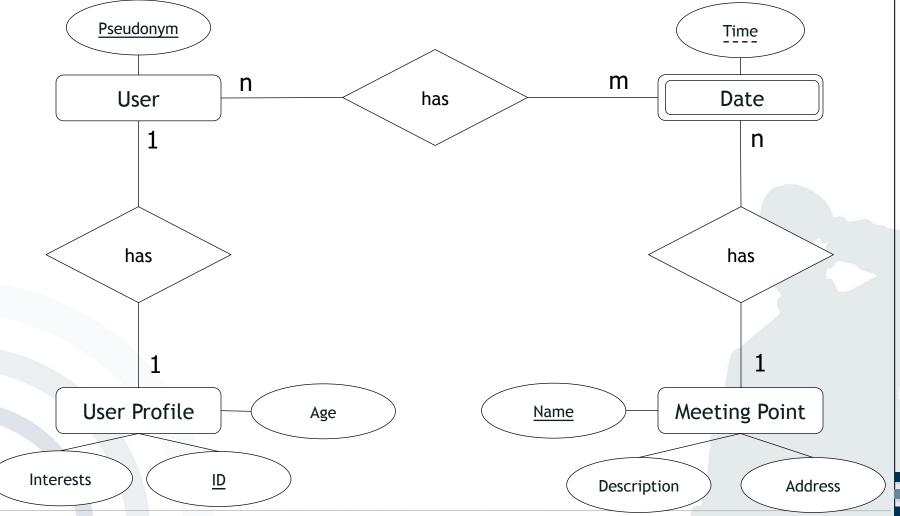
- Users have a user profile. Each user chooses a unique pseudonym.
- The preference attributes of a user are stored in a user profile. These preference attributes are interests, age, and a unique user ID.
- Several users can have multiple dates. A date is only defined by its time. Multiple dates can happen at the same meeting point at the same time.
- A meeting point has a unique name, an address and a description. Each date has only one meeting point

1.) Define entities

User

Exercise 2: ER Model

Date


User Profile

Meeting Point

Exercise 2: ER Model

5.) Define weak entities

Entity Relationship Model

SQL

SQL Repetition

mobile business

Structure of Basic Elements

- Structure of the basic elements
 - SELECT attribute(s)
 - FROM relation(s)
 - [WHERE condition(s)]
 - GROUP BY attribute(s)]
 - [ORDER BY attribute(s)]
- Date Format, Strings and Numbers
 - Date Format: 'YYYY-MM-DD', e.g. '1974-12-31'
 - Strings: 'String', e.g. 'I like SQL'
 - Numbers: Number, e.g. 41 or 34.12

Note:

(1) Dates and Strings have to be enclosed by two apostrophes.(2) The conditions in [...] are optional.

SELECT* ← → → All columnsFROMProducts ← → table 'Products'ORDER BYID ← → → → → order result by column 'ID'

ID	Product_name	Colour	Article_no	Sale_price	Purchase_price	Stock	Items_sold	City
1	Monitor 17'	White	1297812542	399.00	249.99	50	134	Frankfurt
2	Monitor 19'	black	2457897145	499.00	379.00	12	289	Berlin
3	Monitor 17'	black	1297467815	405.00	249.99	25	124	Frankfurt
4	Monitor 19'	white	2459871327	509.00	389.99	150	12	Frankfurt
5	Monitor 20'	black	2789441512	799.00	599.00	520	1052	Berlin
6	Monitor 20'	white	2799151424	829.00	549.99	100	26	Berlin
7	Monitor 20'	anthracite	2764657527	819.00	589.99	50	127	Nürnberg
8	Monitor 21'	anthracite	2845161215	999.00	799.99	100	279	Hamburg
9	Monitor 24'	white	2945712415	1299.00	945.00	25	124	Berlin
10	Monitor 24'	black	2955745742	1350.00	956.00	450	1024	Hamburg

SELECT using WHERE

SELECT*FROMProductsWHEREPurchase_price > 500 AND City = 'Berlin'

			- 1]		
<u>ID</u>	Product_name	Colour	Article_no	Sale_price	Purchase_price	Stock	Sold_items	City
5	Monitor 20'	black	2789441512	799.00	599.00	520	1052	Berlin
6	Monitor 20'	white	2799151424	829.00	549.99	100	26	Berlin
9	Monitor 24'	white	2945712415	1299.00	945.00	25	124	Berlin

SELECT using SUM and GROUP BY

SELECT FROM GROUP BY City, **SUM**(Stock) Products City

City	SUM(Stock)
Frankfurt	225
Berlin	657
Nürnberg	50
Hamburg	550

Exercise 3: SQL

Exercise 3: SQL

- Please use the databases and environment provided by w3schools.com called <u>Tryit Editor</u>
- W3schools also provides several exercises and examples. Use them!

mobile business

SQL W3Schools: Databases

Your Database:

Tablenames	Records
Customers	91
<u>Categories</u>	8
Employees	10
OrderDetails	518
Orders	196
Products	77
Shippers	3
Suppliers	29

Edit the SQL Statement, and click "Run SQL" to see the result.

Run SQL »

SQL Statement:

SELECT * FROM Customers;

Result:

Number of Records: 91

CustomerID	CustomerName	ContactName	Address	City	PostalCode	Country
1	Alfreds Futterkiste	Maria Anders	Obere Str. 57	Berlin	12209	Germany
2	Ana Trujillo Emparedados y helados	Ana Trujillo	Avda. de la Constitución 2222	México D.F.	05021	Mexico
3	Antonio Moreno Taquería	Antonio Moreno	Mataderos 2312	México D.F.	05023	Mexico
4	Around the Horn	Thomas Hardy	120 Hanover Sq.	London	WA1 1DP	UK
5	Berglunds snabbköp	Christina Berglund	Berguvsvägen 8	Luleå	S-958 22	Sweden
6	Blauer See Delikatessen	Hanna Moos	Forsterstr. 57	Mannheim	68306	Germany
7	Blondel père et fils	Frédérique	24, place Kléber	Strasbourg	67000	France

Link: <u>https://www.w3schools.com/sql/trysql.asp?filename=trysql_op_in</u>

a) How many customers are stored in the table 'Customers'?

SELECT FROM **COUNT** (CustomerID)

Customers

COUNT(CustomerID)

91

a) How many customers are stored in the table 'Customers'?

SELECT COUNT (CustomerID)

FROM

Customers

COUNT(CustomerID)	
91	

Question from the exercise:

How many distinct cities are in the table "Customers"?

SELECT COUNT (DISTINCT City) AS individualCitys

FROM Customers

individualCity

69

Note: Not supported by MS Access database

mobile business

b) What is the average price over all Products?

AVG(Price) SELECT Products FROM

AVG(Price)

28.866

c) Display the Name and Price of the Products from most expensive to least expensive.

SELECT ProductName, Price FROM Products ORDER BY Price DESC	Or more complicated: SELECT MAX(Price), ProductName FROM Products GROUP BY ProductName ORDER BY MAX(Price)DESC
Price	ProductName
263.5	Côte de Blaye
123.79	Thüringer Rostbratwurst
97	Mishi Kobe Niku
81	Sir Rodney's Marmalade
62.5	Carnarvon Tigers
55	Raclette Courdavault
53	Manjimup Dried Apples
49.3	Tarte au sucre

Exercise 3d)

d) How many orders were made per day?

SELECT OrderDate, COUNT(OrderDate) AS Orders FROM Orders GROUP BY OrderDate

OrderDate	Orders
7/4/1996	1
7/5/1996	1
7/8/1996	2
7/9/1996	1
7/10/1996	1
7/11/1996	1
7/12/1996	1
7/15/1996	1
7/16/1996	

Exercise 3e)

e) How many Customers are from Paris?

```
SELECT COUNT(City)
FROM Customers
```

WHERE City = "Paris"

Count

2

```
SELECT COUNT(City), City
FROM Customers
WHERE City = "Paris"
GROUP BY City
```

Count	City
2	Paris

mobile business

f) Display the names of all Customers from Germany

SELECT CustomerName, Country FROM Customers WHERE Country = "Germany"

CustomerName	Country
Alfreds Futterkiste	Germany
Blauer See Delikatessen	Germany
Drachenblut Delikatessend	Germany
Frankenversand	Germany
Königlich Essen	Germany
Lehmanns Marktstand	Germany
Morgenstern Gesundkost	Germany
Ottilies Käseladen	Germany

g) Display the Name and Adress of all customers, sorted descending

SELECT CustomerName, Address FROM Customers ORDER BY CustomerName DESC

CustomerName	Address	
Wolski	ul. Filtrowa 68	
Wilman Kala	Keskuskatu 45	
White Clover Markets	305 - 14th Ave. S. Suite 3B	
Wellington Importadora	Rua do Mercado, 12	
Wartian Herkku	Torikatu 38	
Vins et alcools Chevalier	59 rue de l'Abbaye	
Victuailles en stock	2, rue du Commerce	

Exercise 3h + i)

h) How many Customers are from Berlin?

```
SELECT COUNT(City)
FROM Customers
WHERE City = "Berlin"
```

Count

1

i) How many Customers are not from Berlin?

SELECT COUNT(City) FROM Customers WHERE City <> "Berlin" Or: SELECT COUNT(City) FROM Customers WHERE NOT City = "Berlin"

Count			
90			

j) How many Products cost more than 40 and have a CategoryID of less than 3?

SELECT COUNT(ProductID) FROM Products WHERE Price > 40 AND CategoryID < 3

NumberProducts 3

k) How many OrderDetailIDs had a Quantity of more than 5, but less than 10

```
SELECT COUNT(OrderDetailID) AS MediumSizeOrders
FROM OrderDetails
WHERE Quantity > 5 AND Quantity < 10
```

MediumSizeOrders

46

 I) Display 'CategoryName', 'ProductName' and the Price of all Products

CategoryName	ProductName	Price
Beverages	Chartreuse verte	18
Beverages	Chang	19
Beverages	Guaraná Fantástica	4.5
Beverages	Sasquatch Ale	14
Beverages	Steeleye Stout	18
Beverages	Chais	18
Beverages	Côte de Blaye	263.5

Exercise 3m)

m) Display all CustomerNames and OrderDates that have been made from Mexico

SELECT Orders.OrderDate, Customers.CustomerName, Customers.Country FROM Orders INNER JOIN Customers ON Customers.CustomerID = Orders.CustomerID WHERE Country = "Mexico"

OrderDate	CustomerName	Country
9/18/1996	Ana Trujillo Emparedados y helados	Mexico
11/27/1996	Antonio Moreno Taquería	Mexico
7/18/1996	Centro comercial Moctezuma	Mexico
11/14/1996	Pericles Comidas clásicas	Mexico
10/4/1996	Pericles Comidas clásicas	Mexico
9/12/1996	Tortuga Restaurante	Mexico

n) Insert a data record into the table "Orders" from the customer with the new CustomerID = 1 and display it.

INSERT INTO Orders(OrderID, CustomerID, EmployeeID, OrderDate, ShipperID) VALUES (12345, 1, 23243, "2020-01-01", 213442)

or

```
INSERT INTO Orders
VALUES (9999,1, 23243, "2020-01-01", 213442)
```

```
SELECT *
FROM Orders
WHERE CustomerID = 1
```

Important: Date enclosed by apostrophes

o) Update the City of the customer with the CustomerID '1' to Frankfurt.

UPDATE Customers SET City = "Frankfurt" WHERE CustomerID = 1

CustomerID	CustomerNa me	ContactNam e	Address	City	PostalCode	Country
1	Alfreds Futterkiste	Maria Anders	Obere Str. 57	Frankfurt	12209	Germany

Exercise 3p)

p)

p) Delete the entry inserted in Exercise n).

DELETE	FROM	Orders		
WHERE		OrderID	=	10256

q) Delete the whole table "Orders".

DROP TABLE Orders

r) Delete the whole database.

DROP DATABASE name_of_Database

How to create a table?

 Beim Erstellen einer Tabelle muss deren eindeutiger Name, Primärer Schlüssel und die Liste der Attribute definiert werden

CREATE TABLE Kunde (Name char(25), Vorname char(25), Straße char(25), Stadt char(25));

Data types

Data Type	
integer(size)	Integer, "size" defines the maximum number of digits
decimal(p,s)	p specifies the maximum total number of decimal digits that can be stored, both to the left and to the right of the decimal point. s specifies the maximum number of decimal digits that can be stored to the right of the decimal point.
char(size)	Fixed-length character data (length of "size")
varchar(size)	Variable-length character data (maximum length of "size")
date(yyyymmdd)	Date [and time] with all four digits of the year, month, day, [hour (in 24-hour format), minute, and second], e.g. 20070115

Exercise 3 f): SQL

f) Insert a new loan in the table 'loan'.

			_			
loan_number	branch_name	amount		loan_number	branch_name	amount
L-11	Round Hill	900.00	-	L-11	Round Hill	900.00
L-14	Downtown	1500.00		L-14	Downtown	1500.00
L-15	Perryridge	1500.00		L-15	Perryridge	1500.00
L-16	Perryridge	1300.00	7	L-16	Perryridge	1300.00
L-17	Downtown	1000.00		L-17	Downtown	1000.00
L-23	Redwood	2000.00	_	L-23	Redwood	2000.00
L-93	Mianus	500.00	_	L-93	Mianus	500.00
			-	L-94	Downtown	4000.00

INSERT INTO loan (loan_number, branch_name, amount)
VALUES ('L-94', 'Downtown', 4000)

Exercise 3 g): SQL

g) Delete the previously inserted entry from the table 'loan'.

loan_number	branch_name	amount		loan_number	branch_name	amount
L-11	Round Hill	900.00		L-11	Round Hill	900.00
L-14	Downtown	1500.00		L-14	Downtown	1500.00
L-15	Perryridge	1500.00		L-15	Perryridge	1500.00
L-16	Perryridge	1300.00	~	L-16	Perryridge	1300.00
L-17	Downtown	1000.00	_	L-17	Downtown	1000.00
L-23	Redwood	2000.00		L-23	Redwood	2000.00
L-93	Mianus	500.00		L-93	Mianus	500.00
L-94	Downtown	4000.00	-			

DELETE FROM loan WHERE loan number='L-94'

Delete vs Drop

DELETE FROM Orders

Data Manipulation Language: Löscht alle Einträge in der Tabelle Orders. Neue Einträge können mit INSERT INTO wieder hinzugefügt werden.

DROP TABLE Orders

Data Definition Language: Löscht die Tabelle Orders. Die Tabelle muss mit CREATE TABLE neu erstellt werden.

Open Questions?