mobile $)$ business

Chair of Mobile Business \& Multilateral Security

Exercise 6

Business Informatics 2 (PWIN)
Databases \& Data-oriented Modelling

SQL

Sascha Löbner, M.Sc.
www.m-chair.de

- Exercise 1: Entity Relationship Model
- Exercise 2: Deriving Relations from an ERM
- Exercise 3: SQL

Exercise 1: Entity Relationship Model

mobile business

Repetition: ERM

- Modelling of the problem statement from functional perspective
- Abstraction from technical aspects and implementations
- Different modelling concepts (e.g. ERM, SERM, ...) available

Customer orders a song.

mobile business

Repetition: ERM

Cardinalities

- Cardinalities describe the number of relationship instances that an entity can participate in:
- 1:1 (one-to-one), e.g. student - student card (theoretically)
- 1:n (one-to-many), e.g. university - student (theoretically)
- n:m (many-to-many), e.g. professor - student (theoretically)

Intervals (min/max notation)

- Intervals allow specifying cardinalities more accurately.
- They specify that each entity participates in at least min and at most max relationship instances.

Cardinalities

mobile business

- Intervals allow specifying cardinalities more accurately.

mobile $)$
 business

Exercise 1: ER Model

Create an ER model which represents the structure of a university:

- Identify and mark the primary key for each entity and avoid as far as possible artificial keys (e.g. ID).
- Define the relations, using the interval notation.
- Make explicitly use of weak entities.

The ER model should be based on the following information:

- A university consists of different departments. Each of them has a name and a unique number.
- Departments are structured into chairs with unique names. They offer at least one lecture.
- Each chair offers a number of lectures which are described with course number, title and description.
- Exams can be distinguished by its type. For each lecture two exams are offered: One normal exam and one repeat exam. The number of participants for an exam is not limited.
- A student can register for any number of exams. Furthermore, a student is assigned to one department and has a matriculation number and a name.

Repetition: Weak Entities

Weak entities depend on at least one entity and consequently cannot exist without them.

 songs must always be customer.

mobile business

Exercise 1: ER Model

1.) Define entities

Chair

mobile business

Exercise 1: ER Model

2.) Define relationships between entities

mobile business

Exercise 1: ER Model

3.) Define cardinalities (using the interval notation)

mobile $)$
 business

Exercise 1: ER Model

Create an ER model which represents the structure of a university:

- Identify and mark the primary key for each entity and avoid as far as possible artificial keys (e.g. ID).
- Define the relations, using the interval notation.
- Make explicitly use of weak entities.

The ER model should be based on the following information:

- A university consists of different departments. Each of them has a name and a unique number.
- Departments are structured into chairs with unique names. They offer at least one lecture.
- Each chair offers a number of lectures which are described with course number, title and description.
- Exams can be distinguished by its type. For each lecture two exams are offered: One normal exam and one repeat exam. The number of participants for an exam is not limited.
- A student can register for any number of exams. Furthermore, a student is assigned to one department and has a matriculation number and a name.

mobile business

Exercise 1: ER Model

mobile business

Exercise 1: ER Model

mobile
 business

Exercise 1: ER Model

Cardinalities

Intervals (according to erstl/Sinz, 2001)

- Exercise 1: Entity Relationship Model
- Exercise 2: Deriving Relations from an ERM
- Exercise 3: SQL

Repetition: Deriving Relations from an ERM

mobile
 business

Derive Relations from an ER Model

- The relation type with its corresponding attributes is derived from the entity type.

Example:

Name	City	Phone\#

mobile business

Derive Relations from an ER Model

- A 1:1 relationship type does NOT become a relation on its own.
- The information is to be 'attached' to one of the involved entity types.

Example:

mobile business

Derive Relations from an ER Model

- A 1:1 relationship type does NOT become a relation on its own.
- The information is to be 'attached' to one of the involved entity types.

Example:

| Alternative 1: \quadE\# E-Name
 C\#

 | | |
| :--- | :--- | :--- | :--- |

Alternative 2:

$\frac{C \#}{}$	Date	Salary	E\#

mobile business

Derive Relations from an ER Model

- A 1:n relationship type does NOT become a relation on its own.
- The information is to be 'attached' to that relation that corresponds to the entity type with the n -signed edge.

Example:

P\#	Price	PG-Name

mobile business

Derive Relations from an ER Model

- An n:m-relationship type induces an additional relation-type.
- The relation contains
- primary keys of involved entity types as attributes
- and additional attributes of the relation types

Example:

mobile business

Derive Relations from an ER Model

- An n:m-relationship type induces an additional relation-type.
- The relation contains
- primary keys of involved entity types as attributes
- and additional attributes of the relation types

Example:

$\frac{\text { Matriculation }}{\text { Number }}$	Course Number	Exam Result	\ldots
Attributes			Additional attributes

Note: In order to reflect the complete ER Model above, two more relations (Student(Matriculation Number) and Course (Course Number)) are required. The relation above connects both Student and Course entities.

Exercise 2: Deriving Relations from an ERM

Exercise 2a) 1:n-Relationship

Exercise 2a) 1:n-Relationship

Employee:

Company:

Exercise 2b) 1:1-Relationship

mobile business

mobile) business

Employee:

Project:

works:

E\#	$\underline{\text { P\# }}$	Start
\ldots	\ldots	\ldots

- Exercise 1: Entity Relationship Model
- Exercise 2: Deriving Relations from an ERM
- Exercise 3: SQL

mobile business

Exercise 3: SQL

Write the appropriate SQL statements to answer the following questions and draw the table which will be returned as a result.
The Fortune Bank database consists of the four tables branch, customer, loan and borrower.

mobile business

Exercise 3: SQL

Database: Fortune Bank

Table: branch

branch_name	branch_city	assets
Brighton	Brooklyn	7100000.00
Downtown	Brooklyn	9000000.00
Mianus	Horseneck	400000.00
North Town	Rye	3700000.00
Perryridge	Horseneck	1700000.00
Pownal	Bennington	300000.00
Redwood	Palo Alto	2100000.00
Round Hill	Horseneck	8000000.00

Table: customer

customer_name	customer_street	customer_city
Adams	Spring	Pittsfield
Brooks	Senator	Brooklyn
Curry	North	Rye
Glenn	Sand Hill	Woodside
Green	Walnut	Stamford
Hayes	Main	Harrison
Jackson	University	Salt Lake
Johnson	Alma	Palo Alto
Jones	Main	Harrison
Lindsay	Park	Pittsfield
Smith	Main	Rye
Turner	Putnam	Stamford
Williams	Nassau	Princeton

mobile business

Exercise 3: SQL

Database: Fortune Bank

Table: Ioan

loan_number	branch_name	amount
L-11	Round Hill	900.00
L-14	Downtown	1500.00
L-15	Perryridge	1500.00
L-16	Perryridge	1300.00
L-17	Downtown	1000.00
L-23	Redwood	2000.00
L-93	Mianus	500.00

Table: borrower

customer_name	loan_number
Adams	$\mathrm{L}-16$
Curry	$\mathrm{L}-93$
Hayes	$\mathrm{L}-15$
Jackson	$\mathrm{L}-14$
Jones	$\mathrm{L}-17$
Smith	$\mathrm{L}-11$
Smith	$\mathrm{L}-23$
Williams	$\mathrm{L}-17$

mobile business

Exercise 3 a): SQL

a) What is the average amount of loans over all branches?

```
SELECT AVG(amount)
FROM loan
```

1242.857142

Table: Ioan

loan_number	branch_name	amount
L-11	Round Hill	900.00
L-14	Downtown	1500.00
L-15	Perryridge	1500.00
L-16	Perryridge	1300.00
L-17	Downtown	1000.00
L-23	Redwood	2000.00
L-93	Mianus	500.00

mobile business

Exercise 3 b): SQL

b) What is the total amount of loans granted by the Fortune Bank?

```
SELECT SUM(amount)
FROM loan
```

 8700.00
 Table: loan

loan_number	branch_name	amount
L-11	Round Hill	900.00
L-14	Downtown	1500.00
L-15	Perryridge	1500.00
L-16	Perryridge	1300.00
L-17	Downtown	1000.00
L-23	Redwood	2000.00
L-93	Mianus	500.00

mobile business

Exercise 3 c): SQL

c) How many branches does the Fortune Bank have?

```
SELECT COUNT (branch_name)
FROM branch
```

8

Table: branch

branch_name	branch_city	assets
Brighton	Brooklyn	7100000.00
Downtown	Brooklyn	9000000.00
Mianus	Horseneck	400000.00
North Town	Rye	3700000.00
Perryridge	Horseneck	1700000.00
Pownal	Bennington	300000.00
Redwood	Palo Alto	2100000.00
Round Hill	Horseneck	8000000.00

mobile business

Exercise 3 d): SQL

d) How many loans were granted exceeding $\$ 1000$?

Table: loan
SELECT COUNT (loan_number)
FROM loan
WHERE amount>1000

4

loan_number	branch_name	amount
L-11	Round Hill	900.00
L-14	Downtown	1500.00
L-15	Perryridge	1500.00
L-16	Perryridge	1300.00
L-17	Downtown	1000.00
L-23	Redwood	2000.00
L-93	Mianus	500.00

mobile business

Exercise 3 e): SQL

e) How many borrowers are serviced by the branch 'Downtown' and live in Princeton?

loan_number	branch_name	amount
L-11	Round Hill	900.00
L-14	Downtown	1500.00
L-15	Perryridge	1500.00
L-16	Perryridge	1300.00
L-17	Downtown	1000.00
L-23	Redwood	2000.00
L-93	Mianus	500.00

Table: loan

Table: borrower

customer_name	loan_number
Adams	$\mathrm{L}-16$
Curry	$\mathrm{L}-93$
Hayes	$\mathrm{L}-15$
Jackson	$\mathrm{L}-14$
Jones	$\mathrm{L}-17$
Smith	$\mathrm{L}-11$
Smith	$\mathrm{L}-23$
Williams	$\mathrm{L}-17$

Table: customer

customer_name	customer_street	customer_city
Adams	Spring	Pittsfield
Brooks	Senator	Brooklyn
Curry	North	Rye
Glenn	Sand Hill	Woodside
Green	Walnut	Stamford
Hayes	Main	Harrison
Jackson	University	Salt Lake
Johnson	Alma	Palo Alto
Jones	Main	Harrison
Lindsay	Park	Pittsfield
Smith	Main	Rye
Turner	Putnam	Stamford
Williams	Nassau	Princeton

mobile
 business

Exercise 3 e): SQL

e) How many borrowers are serviced by the branch 'Downtown' and live in Princeton?

loan_number	branch_name	amount
L-11	Round Hill	900.00
L-14	Downtown	1500.00
L-15	Perryridge	1500.00
L-16	Perryridge	1300.00
L-17	Downtown	1000.00
L-23	Redwood	2000.00
L-93	Mianus	500.00

Table: loan

Table: borrower

customer_name	loan_number
Adams	$\mathrm{L}-16$
Curry	$\mathrm{L}-93$
Hayes	$\mathrm{L}-15$
Jackson	$\mathrm{L}-14$
Jones	$\mathrm{L}-17$
Smith	$\mathrm{L}-11$
Smith	$\mathrm{L}-23$
Williams	$\mathrm{L}-17$

Table

	Table: customer		
customer_name	customer_street	customer_city	
Adams	Spring	Pittsfield	
Brooks	Senator	Brooklyn	
Curry	North	Rye	
Glenn	Sand Hill	Woodside	
Green	Walnut	Stamford	
Hayes	Main	Harrison	
Jackson	University	Salt Lake	
Johnson	Alma	Palo Alto	
Jones	Main	Harrison	
Lindsay	Park	Pittsfield	
Smith	Main	Rye	
Turner	Putnam	Stamford	
Williams	Nassau	Princeton	
\& Multilateral Security			43

Exercise 3 e): SQL

e) How many borrowers are serviced by the branch 'Downtown' and live in Princeton?

Loan_number	branch_name	amount
L-11	Round Hill	900.00
L-14	Downtown	1500.00
L-15	Perryridge	1500.00
L-16	Perryridge	1300.00
L-17	Downtown	1000.00
L-23	Redwood	2000.00
L-93	Mianus	500.00

Table: loan

Table: borrower	
customer_name	Loan_number
Adams	$\mathrm{L}-93$
Curry	$\mathrm{L}-15$
Hayes	$\mathrm{L}-14$
Jackson	$\mathrm{L}-17$
Jones	$\mathrm{L}-11$
Smith	$\mathrm{L}-23$
Smith	$\mathrm{L}-17$
Williams	

Table: customer

customer_name	customer_street	customer_city
Adams	Spring	Pittsfield
Brooks	Senator	Brooklyn
Curry	North	Rye
Glenn	Sand Hill	Woodside
Green	Walnut	Stamford
Hayes	Main	Harrison
Jackson	University	Salt Lake
Johnson	Alma	Palo Alto
Jones	Main	Harrison
Lindsay	Park	Pittsfield
Smith	Main	Rye
Turner	Putnam	Stamford
Williams	Nassau	Princeton

mobile business

How many borrowers are serviced by the branch 'Downtown" and live in Princeton?

Table:toan		
loan_number	branch_name	amount
	Round Hill	900.00
$\mathrm{~L}-14$	Downtown	1500.00
$\mathrm{~L}-15$	Perryridge	1500.00
$\mathrm{~L}-16$	Perryridge	1300.00
$\mathrm{~L}-17$	Downtown	1000.00
$\mathrm{~L}-23$	Redwood	2000.00
$\mathrm{~L}-93$	Mianus	500.00

$+$| Table: borrower | |
| :--- | :--- |
| customer_name | loan_number |
| Adams | L-16 |
| Curry | L-93 |
| Hayes | L-15 |
| Jackson | L-14 |
| Jones | L-17 |
| Smith | L-11 |
| Smith | L-23 |
| Williams | L-17 |

loan_number	branch_name	amount	customer_name
L-16	Perryridge	1300.00	Adams
L-93	Mianus	500.00	Curry
L-15	Perryridge	1500.00	Hayes
L-14	Downtown	1500.00	Jackson
L-17	Downtown	1000.00	Jones
L-11	Round Hil1	900.00	Smith
L-23	Redwood	2000.00	Smith
L-17	Downtown	1000.00	Williams

loan INNER JOIN borrower ON loan.loan_number=borrower.loan_number

mobile business

How many borrowers are serviced by the branch 'Downtown" and live in Princeton?

loan_number	branch_name	amount	customer_name
L-16	Perryridge	1300.00	Adams
L-93	Mianus	500.00	Curry
L-15	Perryridge	1500.00	Hayes
L-14	Downtown	1500.00	Jackson
L-17	Downtown	1000.00	Jones
L-11	Round Hill	900.00	Smith
L-23	Redwood	2000.00	Smith
L-17	Downtown	1000.00	Williams

TaDle: Cu'stomer	
customer_name	customer_street
Adams	customer_city
Brooks	Spring
Curry	Nonator
Glenn	Sand Hill
Green	Walnut
Hayes	Main
Jackson	University
Johnson	Alma
Jones	Main
Lindsay	Park
Smith	Main

loan_number	branch_name	amount	customer_name	customer_street	customer_city
L-16	Perryridge	1300.00	Adams	Spring	Pittsfield
L-93	Mianus	500.00	Curry	North	Rye
L-15	Perryridge	1500.00	Hayes	Main	Harrison
L-14	Downtown	1500.00	Jackson	University	Salt Lake
L-17	Downtown	1000.00	Jones	Main	Harrison
L-11	Round Hil1	900.00	Smith	Main	Rye
L-23	Redwood	2000.00	Smith	Main	Rye
L-17	Downtown	1000.00	Williams	Nassau	Princeton

(loan INNER JOIN borrower ON loan.loan_number=borrower.loan_number) INNER JOIN customer ON borrower.customer_name = customer.customer_name

mobile business

Exercise 3 e): SQL

How many borrowers are serviced by the branch 'Downtown' and live in Princeton?

```
SELECT COUNT (customer.customer_name)
FROM (loan INNER JOIN borrower ON
    loan.loan_number=borrower.loan_number) INNER JOIN customer ON
    borrower.customer_name = customer.customer_name
WHERE branch_name='Downtown' AND customer_city='Princeton'
```


mobile business

Exercise 3 f): SQL

f) Insert a new loan in the table 'loan'.

loan_number	branch_name	amount
L-11	Round Hill	900.00
L-14	Downtown	1500.00
L-15	Perryridge	1500.00
L-16	Perryridge	1300.00
L-17	Downtown	1000.00
L-23	Redwood	2000.00
L-93	Mianus	500.00

loan_number	branch_name	amount
L-11	Round Hill	900.00
$\mathrm{~L}-14$	Downtown	1500.00
$\mathrm{~L}-15$	Perryridge	1500.00
$\mathrm{~L}-16$	Perryridge	1300.00
$\mathrm{~L}-17$	Downtown	1000.00
$\mathrm{~L}-23$	Redwood	2000.00
$\mathrm{~L}-93$	Mianus	500.00
$\mathrm{~L}-94$	Downtown	4000.00

```
INSERT INTO loan (loan_number, branch_name, amount)
VALUES ('L-94', 'Downtown', 4000)
```


mobile business

Exercise 3 g): SQL

g) Delete the previously inserted entry from the table 'loan'.

loan_number	branch_name	amount
L-11	Round Hill	900.00
L-14	Downtown	1500.00
L-15	Perryridge	1500.00
L-16	Perryridge	1300.00
$\mathrm{~L}-17$	Downtown	1000.00
$\mathrm{~L}-23$	Redwood	2000.00
$\mathrm{~L}-93$	Mianus	500.00
$\mathrm{~L}-94$	Downtown	4000.00

loan_number	branch_name	amount
L-11	Round Hill	900.00
L-14	Downtown	1500.00
L-15	Perryridge	1500.00
L-16	Perryridge	1300.00
L-17	Downtown	1000.00
L-23	Redwood	2000.00
L-93	Mianus	500.00

DELETE FROM loan
WHERE loan_number='L-94'

How to learn SQL

- W3Schools.com provides databases, exercises and explanations
- \rightarrow Will be used in the mentoriums
- Mystery.knightlab.com provides a murder mystery game to learn SQL
- \rightarrow Find the murder in several police databases, using SQL

Open Questions?

