
…
…

...

Assignment 2 - Cryptography

Information & Communication Security 
(WS 2020/21)

Prof. Dr. Kai Rannenberg
Sascha Löbner (M.Sc.) 

Chair of Mobile Business & Multilateral Security
Goethe-University Frankfurt a. M.



…
…

...
Agenda

I. Caesar Cipher
II. Stream Ciphers (Vernam code)
III. Vigenère Cipher 
IV. Asymmetric Cryptosystems and RSA 
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Exercise 1 (Caesar Cipher)

A Caesar encryption is given by the following encryption function:

𝑒!: ℤ"# → ℤ"#, 𝑥 → 𝑥 + 𝑘 𝑚𝑜𝑑 26

,with 𝑘 ∈ ℤ"#

a) Encrypt the message "perfect indistinguishability" using 𝑒$%.
b) What is perfect indistinguishability?
c) Does the condition of perfect indistinguishability hold in general 

for the Caesar Cipher? Give a two-line explanation. 
d) What attacks can be used to break the Caesar Cipher?
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Exercise 1 (Caesar Cipher)

§ For k є {0..25} we have:
§ An encryption function: 

§ e: x -> (x+k) mod 26
§ A decryption function: 

§ d: x -> (x-k) mod 26
§ In this case ke = kd
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Exercise 1 (Caesar Cipher)

§ We assign a number for every character.
§ This enables us to calculate with letters as if they 

were numbers.
§ Assign letter with index 10 index 0 

a b c d e f g h i j k l m n o p q r s t u v w x y z
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

a) Encrypt the message "perfect indistinguishability"
using 𝑒!".
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Exercise 1 (Caesar Cipher)

§ We assign a number for every 
character.

§ This enables us to calculate with 
letters as if they were numbers.

§ Assign letter with index 10 index 0 

k l m n o p q r s t u v w x y z a b c d e f g h i j
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

a b c d e f g h i j k l m n o p q r s t u v w x y z
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

"perfect indistinguishability" → "zobpomd sxnscdsxqescrklsvsdi"

a) Encrypt the message "perfect indistinguishability"
using 𝑒!".
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Exercise 1 (Caesar Cipher)

b) What is perfect indistinguishability?
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Exercise 1 (Caesar Cipher)

b) What is perfect indistinguishability?
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Solution: An encryption scheme is perfectly secret if for 
all plaintexts 𝑚", 𝑚! ∈ 𝑀 and all cyphertexts 𝑐 ∈ 𝐶:

Pr 𝑒# 𝑚" = 𝑐 = Pr 𝑒# 𝑚! = 𝑐

The condition that all plaintexts have the same 
probability for a given ciphertext is called perfect 
indistinguishability. [Kn19] 
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c) Does the condition of perfect indistinguishability hold 
in general for the Caesar Cipher? Give a two-line 
explanation. 
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c) Does the condition of perfect indistinguishability hold 
in general for the Caesar Cipher? Give a two-line 
explanation. 

Solution: No. In general, the Caesar Cypher does not fulfil 
the condition of perfect secrecy. We easily can decrypt 
the message by trying all 26 possible keys. (We can make 
the scheme perfectly secret if we use a different key for 
each letter.) 
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d) What attacks can be used to break the Caesar Cipher?

11



…
…

...

d) What attacks can be used to break the Caesar Cipher?

Solution:
§ Brute force attack 
§ Statistical ciphertext-only attack
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Assessment of Caesar Cipher

§ Very simple form of encryption.
§ The encryption and decryption algorithms are very easy 

and fast to compute.
§ It uses a very limited key space (n=26)
§ Therefore, the encryption is very easy and fast to 

compromise.
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Encryption - Decryption
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http://www.pgpi.org/doc/guide/6.5/en/intro/

http://www.pgpi.org/doc/guide/6.5/en/intro/
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Exercise 2 Stream Ciphers 

(Vernam code)

15

a) What is a one-time pad (Vernam-code)? 
b) Zoe wants to encrypt the letter Z. The letter is 

given in ASCII code. The ASCII value for Z is 9010 = 
11110102. Using Vernam-code, which of the 
following keys are suitable to encrypt this 
plaintext?

I. b1) 11100100
II. b2) 0011101
III. b3) 101011

c) Encrypt the message using Vernam-code, XOR as 
an encryption function and the key in b).
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Exercise 2 Stream Ciphers 

(Vernam code)

16

a) What is a one-time pad (Vernam-code)? 
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Exercise 2 Stream Ciphers 

(Vernam code)
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a) What is a one-time pad (Vernam-code)? 

Solution: 
§ Invented by Gilbert Vernam
§ The length of the key is as long as the length of the 

plaintext.
§ The key is randomly chosen and only used once. 
§ Every key has the same probability. 
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Exercise 2 Stream Ciphers 

(Vernam code)
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Exercise 2 Stream Ciphers 

(Vernam code)

19

b) Zoe wants to encrypt the letter Z. The letter 
is given in ASCII code. The ASCII value for Z is 
9010 = 11110102. Using Vernam-code, which of 
the following keys are suitable to encrypt this 
plaintext?

I. b1) 11100100
II. b2) 0011101
III. b3) 101011
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Exercise 2 Stream Ciphers 

(Vernam code)
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b) Zoe wants to encrypt the letter Z. The letter 
is given in ASCII code. The ASCII value for Z is 
9010 = 11110102. Using Vernam-code, which of 
the following keys are suitable to encrypt this 
plaintext?

I. b1) 11100100
II. b2) 0011101
III. b3) 101011



…
…

...
Exercise 2: Stream Ciphers 

(Vernam code)
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c) Encrypt the message using Vernam-code, XOR 
as an encryption function and the key in b).

A B A XOR B
0 0 0
0 1 1
1 0 1
1 1 0

A B A OR B
0 0 0
0 1 1
1 0 1
1 1 1

A B A  AND B
0 0 0
0 1 0
1 0 0
1 1 1
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Exercise 2: Stream Ciphers 

(Vernam code)
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c) Encrypt the message using Vernam-code, XOR 
as an encryption function and the key in b).

A B A XOR B
0 0 0
0 1 1
1 0 1
1 1 0

1 1 1 1 0 1 0

0 0 1 1 1 0 1

1 1 0 0 1 1 1

A B A OR B
0 0 0
0 1 1
1 0 1
1 1 1

A B A  AND B
0 0 0
0 1 0
1 0 0
1 1 1
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Exercise 3 (Vigenère Cipher)

a) What is the Vigenère Cipher?
b) In the following you are given the key 𝑘 = "𝐺𝑂𝐸𝑇𝐻𝐸"

and the cyphertext 𝑐 =
"CSWMLRJWWMOISCWMIIGIXBMYRQEFWYY". Identify 
the message 𝑚 using the running key variant as given 
in the lecture. Show the necessary steps (use the 
Vigenére tableau below when necessary).
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Exercise 3 (Vigenère Cipher)

a) What is the Vigenère Cipher?
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Exercise 3 (Vigenère Cipher)

a) What is the Vigenère Cipher?

§ The Vigenère cipher chooses a sequence of keys, 
represented by a string. 

§ The key letters are applied to successive plaintext 
characters. 

§ When the end of the key is reached, the key starts 
over. 

§ The length of the key is called the period of the cipher. 
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Exercise 3 (Vigenère Cipher)

b) In the following you are given the key 𝑘 = "𝐺𝑂𝐸𝑇𝐻𝐸"
and the cyphertext 𝑐 =
"CSWMLRJWWMOISCWMIIGIXBMYRQEFWYY". Identify 
the message 𝑚 using the running key variant as given 
in the lecture. Show the necessary steps (use the 
Vigenére tableau below when necessary).

26
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Exercise 3 (Vigenère Cipher)

b) In the following you are given the key 𝑘 = "𝐺𝑂𝐸𝑇𝐻𝐸"
and the cyphertext 𝑐 =
"CSWMLRJWWMOISCWMIIGIXBMYRQEFWYY". Identify 
the message 𝑚 using the running key variant as given 
in the lecture. Show the necessary steps (use the 
Vigenére tableau below when necessary).
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c C S W M L R J W W M O I S C W M I I G I X B M Y R Q E F W Y Y

k G O E T H E G O E T H E G O E T H E G O E T H E G O E T H E G

m W E S T E N D I S T H E M O S T B E A U T I F U L C A M P U S
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Exercise 3 (Vigenère Tableau)
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Assessment Vigenére Cipher

§ Then a Prussian cavalry officer named Kasiski noticed 
that repetitions occur when characters of the key appear 
over the same characters in the plaintext.

§ The number of characters between successive 
repetitions is a multiple of the period (key length).

§ Given this information and a short period the Vigenère
cipher is quite easily breakable.

§ Example: The Caesar cipher is a Vigenère cipher with a 
period of 1.

[Bi2005]
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Guess which crypto system this is
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Symmetric or Asymmetric?
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Symmetric Encryption

Algorithm Performance*

RC6 78 ms

SERPENT 95 ms

IDEA 170 ms

MARS 80 ms

TWOFISH 100 ms

DES-ede 250 ms

RIJNDEAL (AES) 65 ms

* Encryption  of 1 MB on a Pentium 2.8 GHz, using the FlexiProvider Java)

Advantage: Algorithms are very fast

[J. Buchmann: Lecture Public Key Infrastrukturen, FG Theoretische Informatik, TU-Darmstadt]
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Performance of 
Public Key Algorithms

Algorithm Performance
*

Performance compared to
Symmetric encryption (AES)

RSA (1024 
bits)

6.6 s Factor 100 slower 

RSA (2048 
bits)

11.8 s Factor 180 slower

* Encryption of 1 MB on a Pentium 2.8 GHz, using the FlexiProvider (Java)

Disadvantage: Complex operations 
with very big numbers

Þ Algorithms are very slow

[J. Buchmann: Lecture Public Key Infrastrukturen, FG Theoretische Informatik, TU-Darmstadt]
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This crypto system is…?
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Symmetric or Asymmetric?
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Exercise 4 (Asymmetric 
Cryptosystems and RSA)

a) Describe differences between symmetric and asymmetric cryptosystems.  
b) Alice wants to send a message m to Bob. Because the message is a secret, 

Alice encrypts the message using RSA. Complete the flow chart below and 
also show the necessary calculation steps for encryption and decryption. 
Indicate which information are public or known only by Bob or Alice.

c) Consider a RSA cryptosystem. The following keys were made public: 𝑒=5, 
𝑛=21.
i. Encrypt the message 𝑚=3 using RSA

ii. Determine p and q. 
iii. Determine the private key d.
iv. Decrypt the cyphertext and check that the result is 𝑚=3
v. What is the problem with the chosen keys?

d) Decrypt the message c = 7 using RSA. The private key of the receiver is 𝑑 =
4 and 𝑛 = 13.

e) Why is it possible to break RSA with Post-Quantum Cryptography?

34
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Exercise 4 (Asymmetric 
Cryptosystems and RSA)

a) Describe differences between symmetric and asymmetric 
cryptosystems.  

35
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Exercise 4 (Asymmetric
Cryptosystems and RSA) 
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a) Describe differences between symmetric and 
asymmetric cryptosystems.  

Symmetric Asymmetric
Both encryption and decryption are 
done with the same key. 

Encryption with public key, 
decryption with private key. 

One key per communication pair is 
necessary. 

Does not require a secure 
communication channel. Public key 
can be freely distributed. 

Efficient in terms of performance Less efficient

Keys have to be kept secret Only keep own private key secret 

Secure agreement and transfer are 
necessary.

Does not require agreement on a 
shared key. 

A centre for key distribution is 
possible but this party then knows all 
secret keys! 

A centre for key distribution is 
possible and this party does not 
know the secret keys.
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Exercise 4 (Asymmetric
Cryptosystems and RSA) 
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b) Alice wants to send a message m to Bob. Because the 
message is a secret, Alice encrypts the message using 
RSA. Complete the flow chart below and also show the 
necessary calculation steps for encryption and 
decryption. Indicate which information are public or 
known only by Bob or Alice.
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Exercise 4 (Asymmetric
Cryptosystems and RSA) 
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I want to send you a message m 

Alice Bob

• Alice has a 
message m
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Exercise 4 (Asymmetric
Cryptosystems and RSA) 
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I want to send you a message m 

Alice Bob

• Bob chooses 𝑝, 𝑞
• Bob calculates 𝑛 = 𝑝 ∗ 𝑞
• Bob chooses public key 𝑒 that 1 <
𝑒 < 𝑝 − 1 𝑞 − 1 and 
gcd 𝑒, 𝑝 − 1 𝑞 − 1 = 1

• Computes a modular inverse d that:  
1 < 𝑑 < 𝑝 − 1 𝑞 − 1 and 
𝑒𝑑 ≡ 1 mod 𝑝 − 1 (𝑞 − 1)

• Alice has a 
message m
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Exercise 4 (Asymmetric
Cryptosystems and RSA) 
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I want to send you a message m 

Alice Bob

Bob publishes (e, n)

• Bob chooses 𝑝, 𝑞
• Bob calculates 𝑛 = 𝑝 ∗ 𝑞
• Bob chooses public key 𝑒 that 1 <
𝑒 < 𝑝 − 1 𝑞 − 1 and 
gcd 𝑒, 𝑝 − 1 𝑞 − 1 = 1

• Computes a modular inverse d that:  
1 < 𝑑 < 𝑝 − 1 𝑞 − 1 and 
𝑒𝑑 ≡ 1 mod 𝑝 − 1 (𝑞 − 1)• Alice calculates

𝑐 = 𝑚! mod 𝑛

• Alice has a 
message m
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Exercise 4 (Asymmetric
Cryptosystems and RSA) 
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I want to send you a message m 

Alice Bob

Alice sends c

Bob publishes (e, n)

• Bob chooses 𝑝, 𝑞
• Bob calculates 𝑛 = 𝑝 ∗ 𝑞
• Bob chooses public key 𝑒 that 1 <
𝑒 < 𝑝 − 1 𝑞 − 1 and 
gcd 𝑒, 𝑝 − 1 𝑞 − 1 = 1

• Computes a modular inverse d that:  
1 < 𝑑 < 𝑝 − 1 𝑞 − 1 and 
𝑒𝑑 ≡ 1 mod 𝑝 − 1 (𝑞 − 1)• Alice calculates

𝑐 = 𝑚! mod 𝑛

• Bob computes 𝑚 = 𝑐" mod 𝑛
and can now read the message

• Alice has a 
message m
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Exercise 4 (Asymmetric
Cryptosystems and RSA) 

c) Consider a RSA cryptosystem. The 
following keys were made public: 𝑒 = 5, 
𝑛 = 21.
i. Encrypt the message 𝑚 = 3 using RSA
ii. Determine p and q. 
iii. Determine the private key d.
iv. Decrypt the cyphertext and check that the 

result is 𝑚 = 3
v. What is the problem with the chosen keys?
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Exercise 4 (Asymmetric
Cryptosystems and RSA) 

c.i Encrypt the message 𝑚 = 3 using RSA. The following 
keys were made public: 𝑒 = 5, 𝑛 = 21.

Solution:  𝑐 = 𝑚, mod 𝑛
𝑐 = 3- mod 21
𝑐 = 243mod 21
𝑐 = 12

45
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Exercise 4 (Asymmetric
Cryptosystems and RSA) 

c.ii Determine p and q (Factorize n). 
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Exercise 4 (Asymmetric
Cryptosystems and RSA) 

c.ii Determine p and q (Factorize n). 

Solution: 3 · 7 = 21 (or use Factorization)
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Exercise 4 (Asymmetric
Cryptosystems and RSA) 

c.iii Determine d. 
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Background − Modulo

§ Let 𝑎, 𝑏 ∈ ℤ ∖ {0}. With remainder(𝑎, 𝑏)
we denote the remainder, which results 
from dividing 𝑎 by 𝑏

§ 𝑅𝑒𝑠𝑡 𝑎, 𝑏 ≔ min{𝑟 ∈ ℕ ∶ ∃ 𝑚 ∈ ℤ𝑚𝑖𝑡 𝑎 =
𝑚 D 𝑏 + 𝑟}

§ 𝑅𝑒𝑠𝑡 𝑎, 𝑏 = a −m D 𝑏
§ 𝑎 ≡ 𝑏 𝑚𝑜𝑑 𝑚 ∶⇔ 𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟 𝑎,𝑚 =
𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟 𝑏,𝑚 ,𝑤𝑖𝑡ℎ 𝑚 ∈ ℕ ∖ {1}
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Exercise 4 (Asymmetric
Cryptosystems and RSA) 

c.iii Determine d. 
Solution:
𝜙 𝑛 = (𝑝 − 1)(𝑞 − 1)
𝜙 𝑛 = 12
𝑑 · 𝑒 ≡ 1 𝑚𝑜𝑑 𝜙 𝑛 and	 1 < 𝑑 < 𝜙 𝑛
𝑑 · 5 ≡ 1 𝑚𝑜𝑑 12
𝑑 · 5 ≡ 1 𝑚𝑜𝑑 12
𝑑 = 5
1 < 5 < 12

50

12 → +1 → 13
24 → +1 → 25
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Exercise 4 (Asymmetric
Cryptosystems and RSA) 

c.iv Decrypt the cyphertext and check that 
the result is 𝑚 = 3 
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Exercise 4 (Asymmetric
Cryptosystems and RSA) 

c.iv Decrypt the cyphertext and check that 
the result is 𝑚 = 3 

Solution:𝑚 = 𝑐! mod 𝑛
𝑚 = 12" mod 21		
𝑚 = 248832 mod 21
𝑚 = 3
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Simple Way

2 4 8 8 3 2 : 2 1 = 1 1 8 9
2 1
3 8
2 1
1 7 8
1 6 8
1 0 3
8 4
1 9 2
1 8 9

3 53Only for small exponents
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Excursus - Modular 

exponentiation

𝑚 = 12" mod 21
12	≡ 12	mod	21
12# ≡ 144 mod 21 ≡ 18
12$ ≡ 12# D 12# ≡ 18 D 18 ≡ 18# mod 21 ≡ 9
12" ≡ 12$ D 12 ≡ 9 D 12 mod 21
𝑚 = 108 mod 21
𝑚 = 3

54

1 2 3 4 5 6

21 42 63 84 105 126
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Exercise 4 (Asymmetric
Cryptosystems and RSA) 

c.v What is the problem with the chosen 
keys?

Solution:
§ Too short, a modulus with up to around 

1000 bits can be factored (in 2019).
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Exercise 4 (Asymmetric
Cryptosystems and RSA) 

d) Decrypt the message c = 2 using RSA. The private key 
of the receiver is 𝑑 = 3 and 𝑛 = 15.
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Exercise 4 (Asymmetric
Cryptosystems and RSA) 

d) Decrypt the message c = 2 using RSA. The private key 
of the receiver is 𝑑 = 3 and 𝑛 = 15.

Solution:  𝑚 = 𝑐3 mod 𝑛
8 = 24 mod 15
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Exercise 4 (Asymmetric
Cryptosystems and RSA) 

e) Let 𝑛 = 221. Use Fermat’s factorization to factorize 𝑛. 
(Hint: 𝑛 = 𝑥5 − 𝑦5 = 𝑥 + 𝑦 𝑥 − 𝑦 )
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Exercise 4 (Asymmetric
Cryptosystems and RSA) 

e) Let 𝑛 = 221. Use Fermat’s factorization to factorize 𝑛. 
(Hint: 𝑛 = 𝑥5 − 𝑦5 = 𝑥 + 𝑦 𝑥 − 𝑦 )
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Solution: 𝑛 = 𝑥5 − 𝑦5

221 ≈ 14.87

Start with 𝑥 = 15
𝑥5 − 𝑛 = 𝑦5, put in the numbers
225 − 221 = 4, this is a square. We receive 
𝑦 = 2 (If we do not receive a square we try 𝑥 = 16 ...)

𝑛 = 𝑥 + 𝑦 𝑥 − 𝑦 = 15 + 2 15 − 2 = 17 c 13

(Only efficient if prime factors are close)
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Exercise 4 (Asymmetric
Cryptosystems and RSA) 

f) Why can Post-Quantum Cryptography break RSA?
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Exercise 4 (Asymmetric
Cryptosystems and RSA) 

f) Why can Post-Quantum Cryptography break RSA?

Solution: RSA is based on the difficulty to solve a 
factoring problem. “Shor’s factoring algorithm leverages 
the Quantum Fourier Transform to solve factoring 
problems in polynomial time.” [Kn19] 
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Assessment of RSA

§ “RSA [currently] considered as secure 
against non quantum computers”
§ Prime factors randomly chosen
§ Prime factors more than 1000 bits longs

62
[Kn19, p. 182]
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Thank you!
Questions: security@m-chair.de
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