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In the following you will find some bonus material to the second exercise including Modular 

Exponentiation and Fermat’s factorization.  

 

Modular Exponentiation  

 

The fast exponentiation algorithm is based on the assumption that for  

𝑥𝑎𝑚𝑜𝑑 𝑛 = (((𝑥2𝑚𝑜𝑑 𝑛)2 𝑚𝑜𝑑 𝑛)2 … )2 𝑚𝑜𝑑 𝑛, 𝑤𝑖𝑡ℎ  𝑎 = 2𝑘  (𝑎 𝑝𝑜𝑤𝑒𝑟 𝑜𝑓 2) 

squaring is iterated k times. For example, 𝑥(22048) can be computed in 2048 modular squaring 

operations (Knospe 2019, p. 67). 

 

For exponents that are not a power of 2, we can write it as a sum of powers of 2. (Remember that 

𝑥𝑏 ∙ 𝑥𝑐 = 𝑥𝑏+𝑐) 

 

Example (Lecture Slide 21):  

To calculate 717𝑚𝑜𝑑 77 we can write 17 = 24 + 20.  
We also have 24 = 22 ∙ 22 and 22 = 21 ∙ 21. 

 

71 ≡ 7 mod 77 ⇔ 7 mod 77 =  7 

72 ≡ 49 mod 77 ⇔  49 mod 77 =  49 

74 ≡ 72 ∙ 72 ≡ 49 ∙ 49 mod 77 ⇔  2401 mod 77 =  14  

78 ≡ 74 ∙ 74 ≡ 14 ∙ 14 mod 77 ⇔  196 mod 77 =  42 

716 ≡ 78 ∙ 78 ≡ 42 ∙ 42 mod 77 ⇔  1764 mod 77 = 70 

717 ≡ 716 ∙ 71 ≡ 70 ∙ 7 mod 77 ⇔  490 mod 77 = 28 

 

 

 

 

 

 

Powers of 2 

16 8 4 2 1 

24 23 22 21 20 
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Bonus Exercise: 

 

Use modular exponentiation to solve 464𝑚𝑜𝑑 7 and 3210𝑚𝑜𝑑 15. You can check your results on 

https://sagecell.sagemath.org with the following syntax (e.g. 3128𝑚𝑜𝑑 15): 

 

Fermat’s Factorization 

 

Let 𝑝, 𝑞 be prime and 𝑁 = 𝑝𝑞. Fermat’s factoring represents N as a difference of 2 squares:  

𝑁 = 𝒙𝟐 − 𝒚𝟐 = (𝒙 + 𝒚)(𝒙 − 𝒚)). 

First, we start with x = ⌈√𝑁⌉ and then increase x by 1 until 𝑥2 − 𝑁 is square (so that we can derive 

y) so that 𝑵 = 𝑥2 − 𝑦2 holds. 

 

This method works because we can represent N as a difference of 2 squares:  

𝑝𝑞 = (
1

2
(𝑝 + 𝑞)2 − (

1

2
(𝑝 − 𝑞)2)2 = 𝑥2−𝑦2. 

 

You will find this explanation with more details in Knospe 2019, p. 178 f.  

 

Bonus Exercise: 

Let 𝑁 = 247; then we first set 𝑥 ≈ √𝑁. We obtain  𝑥 = 16 and derive 𝑥2 − 𝑁 = 9. Because 9 is 

square we know that 𝑦 = 3. From above we know that 𝑝𝑞 = (𝑥 + 𝑦)(𝑥 − 𝑦) so we receive 247 =
19 ∙ 13. 

 

If you need more practice, just choose some primes 𝑝, 𝑞 and derive N. Then use Fermat’s factoring 

to solve N. 
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