

Fachbereich Wirtschaftswissenschaften
I n s t i t u t f ü r W i r t s c h a f t s i n f o r m a t i k
Lehrstuhl für M-Business & Multilateral Security

Fachbereich

Wirtschaftswissenschaften

Institut für Wirtschaftsinformatik
Chair of Mobile Business & Multilateral Security
www.m-chair.de

Sascha Löbner, M.Sc.

E-Mail security@m-chair.de

Campus Westend • Theodor-W.Adorno-Platz 4 • D-60629 Frankfurt am Main

H i e r w i r d W i s s e n W i r k l i c h k e i t

Information and

Communications Security

WS 2020/21

Assignment 2 – Bonus Material

Cryptography

Authentication

In the following you will find some bonus material to the second exercise including Modular

Exponentiation and Fermat’s factorization.

Modular Exponentiation

The fast exponentiation algorithm is based on the assumption that for

𝑥𝑎𝑚𝑜𝑑 𝑛 = (((𝑥2𝑚𝑜𝑑 𝑛)2 𝑚𝑜𝑑 𝑛)2 …)2 𝑚𝑜𝑑 𝑛, 𝑤𝑖𝑡ℎ 𝑎 = 2𝑘 (𝑎 𝑝𝑜𝑤𝑒𝑟 𝑜𝑓 2)

squaring is iterated k times. For example, 𝑥(22048) can be computed in 2048 modular squaring

operations (Knospe 2019, p. 67).

For exponents that are not a power of 2, we can write it as a sum of powers of 2. (Remember that

𝑥𝑏 ∙ 𝑥𝑐 = 𝑥𝑏+𝑐)

Example (Lecture Slide 21):

To calculate 717𝑚𝑜𝑑 77 we can write 17 = 24 + 20.
We also have 24 = 22 ∙ 22 and 22 = 21 ∙ 21.

71 ≡ 7 mod 77 ⇔ 7 mod 77 = 7

72 ≡ 49 mod 77 ⇔ 49 mod 77 = 49

74 ≡ 72 ∙ 72 ≡ 49 ∙ 49 mod 77 ⇔ 2401 mod 77 = 14

78 ≡ 74 ∙ 74 ≡ 14 ∙ 14 mod 77 ⇔ 196 mod 77 = 42

716 ≡ 78 ∙ 78 ≡ 42 ∙ 42 mod 77 ⇔ 1764 mod 77 = 70

717 ≡ 716 ∙ 71 ≡ 70 ∙ 7 mod 77 ⇔ 490 mod 77 = 28

Powers of 2

16 8 4 2 1

24 23 22 21 20

http://www.m-chair.de/
mailto:security@m-chair.de

Bonus Exercise:

Use modular exponentiation to solve 464𝑚𝑜𝑑 7 and 3210𝑚𝑜𝑑 15. You can check your results on

https://sagecell.sagemath.org with the following syntax (e.g. 3128𝑚𝑜𝑑 15):

Fermat’s Factorization

Let 𝑝, 𝑞 be prime and 𝑁 = 𝑝𝑞. Fermat’s factoring represents N as a difference of 2 squares:

𝑁 = 𝒙𝟐 − 𝒚𝟐 = (𝒙 + 𝒚)(𝒙 − 𝒚)).

First, we start with x = ⌈√𝑁⌉ and then increase x by 1 until 𝑥2 − 𝑁 is square (so that we can derive

y) so that 𝑵 = 𝑥2 − 𝑦2 holds.

This method works because we can represent N as a difference of 2 squares:

𝑝𝑞 = (
1

2
(𝑝 + 𝑞)2 − (

1

2
(𝑝 − 𝑞)2)2 = 𝑥2−𝑦2.

You will find this explanation with more details in Knospe 2019, p. 178 f.

Bonus Exercise:

Let 𝑁 = 247; then we first set 𝑥 ≈ √𝑁. We obtain 𝑥 = 16 and derive 𝑥2 − 𝑁 = 9. Because 9 is

square we know that 𝑦 = 3. From above we know that 𝑝𝑞 = (𝑥 + 𝑦)(𝑥 − 𝑦) so we receive 247 =
19 ∙ 13.

If you need more practice, just choose some primes 𝑝, 𝑞 and derive N. Then use Fermat’s factoring

to solve N.

Literature

(Knospe 2019) Knospe, Heiko. A Course in Cryptography. Vol. 40. American Mathematical Soc.,

2019. https://ebookcentral.proquest.com/lib/senc/reader.action?docID=5962876

https://sagecell.sagemath.org/
https://ebookcentral.proquest.com/lib/senc/reader.action?docID=5962876

	Modular Exponentiation
	Fermat’s Factorization
	𝑁=,𝒙-𝟐.−,𝒚-𝟐.=,𝒙+𝒚.,𝒙−𝒚.).
	Literature

