

Cybersecurity in the Automotive DomainMOB1 Guest Lecture

Dr. Markus Tschersich | November 19th, 2019 | Goethe University Frankfurt

https://www.continental-corporation.com/

Cybersecurity in the Automotive Domain Agenda

Our Vision:

Your Mobility. Your Freedom. Our Signature.

- Highly developed, intelligent technologies for mobility, transport and processing make up our world.
- > We want to provide the best solutions for each of our customers in each of our markets.
- This is how we satisfy the demands of our stakeholders and become recognized as a highly reliable and respected partner creating the highest possible value.

Our Mission:

The Future Starts Earlier with Continental.

> Safety -

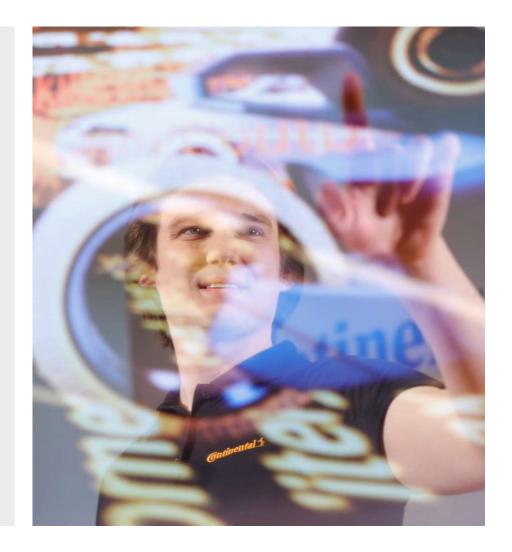
our aim: Zero accidents

To protect life and conserve resources

> Information -

our aim: Saving time, increasing comfort

Intelligent mobility through constantly connected driving


> Environment –

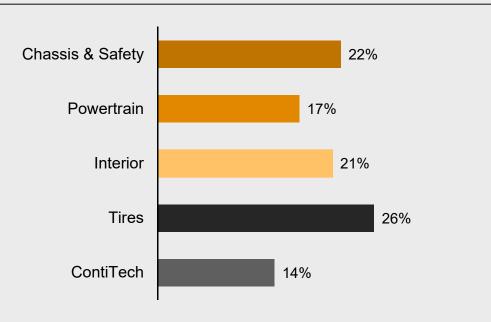
our aim: Clean air

Resource-efficient and emission-free driving

> Affordable mobility -

our aim: Individual mobility for everyone Enabling more freedom and opportunities

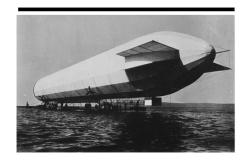
Overview of 2018


Sales by division in %

544 sites* in 60 countries

* Since 1871 with headquarters in Hanover, Germany

Status: Dec. 31, 2018



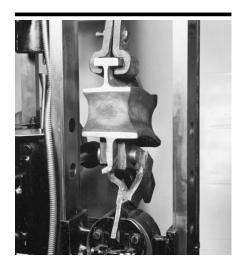
Continental-Caoutchouc- und Gutta-Percha Compagnie is founded in Hanover on October 8 as a joint stock company. Soft rubber goods such as hoof buffers for horses, rubberized fabrics, as well as pneumatic tires for bicycles and cars are manufactured.

The rampant horse is adopted as the trademark.


<u>1871</u> <u>1882</u>

The first German airship LZ 1 rises above Lake Constance for its inaugural flight. The gas cells are sealed with Continental balloon material.

Continental is the first company in the world to develop automobile tires with a patterned tread.


Louis Blériot, the pioneer aviator, writes history with the first flight across the English Channel. Continental Aeroplan material covers the fuselage and wings of his plane.

The same year, specimens of synthetic rubber developed at the Bayer laboratories are successfully vulcanized at Continental and processed to make the first test tires.

The first edition of the customer magazine "Echo Continental" is published featuring contributions from young authors such as Erich Maria Remarque and drawings by well-known commercial artists.

<u>1900</u> <u>1904</u> <u>1909</u> <u>1913</u>

Continental markets a rubber-metal bonding under the registered trade name of Continental Schwingmetall.It is used to isolate vibrations and noise when supporting motors.

Continental adds M+S tires for winter driving to its range of conventional tires.

In close collaboration with Daimler-Benz and Porsche, Continental repeats its pre-war successes on the track.

Racing in cars fitted with Continental tires, drivers like Karl Kling, Stirling Moss and Juan Manuel Fangio win the 1952 Carrera Panamericana and the French, British, Dutch and Italian Grand Prix.

Opening of the Contidrom tire testing facility on the edge of the Lüneburg Heath.

<u>1932</u> <u>1952</u> <u>1951–55</u> <u>1967</u>

The Automotive Systems division is established to intensify the systems business with the automotive industry.

Continental acquires Siemens VDO Automotive AG and advances to among the top five suppliers in the automotive industry worldwide, at the same time boosting its market position in Europe, North America and Asia.

Start of extensive automated-driving tests in the U.S. state of Nevada.

A highly automated Continental test vehicle has covered 15,000 miles on public roads without any accidents.

For the first time, the company employs more than

235,000

employees all over the world.
Annual sales amount to €44 billion.

<u>1995</u> <u>2007</u> <u>2012</u> <u>2017</u>

Continental has built a test vehicle to enable driverless mobility, especially in cities. Called a **CUbE** (**C**ontinental **U**rban Mo**b**ility **E**xperience), this vehicle is being trialled at the Frankfurt site.

Opening of the research and experimental laboratory "Taraxagum Lab Anklam" in Anklam, Mecklenburg-Vorpommern, Germany. It provides a base for research into the cultivation and processing of Russian dandelion as an alternative source of raw material to the rubber tree.

Through its architecture, the new Continental headquarters – which are to be inaugurated to mark the company's 150-year anniversary – symbolize and promote the culture of innovation and interconnectivity at Continental. The new campus meets the demand for agile, flexible and interconnected collaboration throughout the entire organization, as is already common practice at Continental worldwide.

The Executive Board

Corporate Functions: Corporate Communications, Corporate Quality and Environment, Continental Business System

Corporate Functions: Finance, Controlling, Compliance, Law, IT

Corporate Functions: Human Relations and Sustainability, Director of Labor Relations

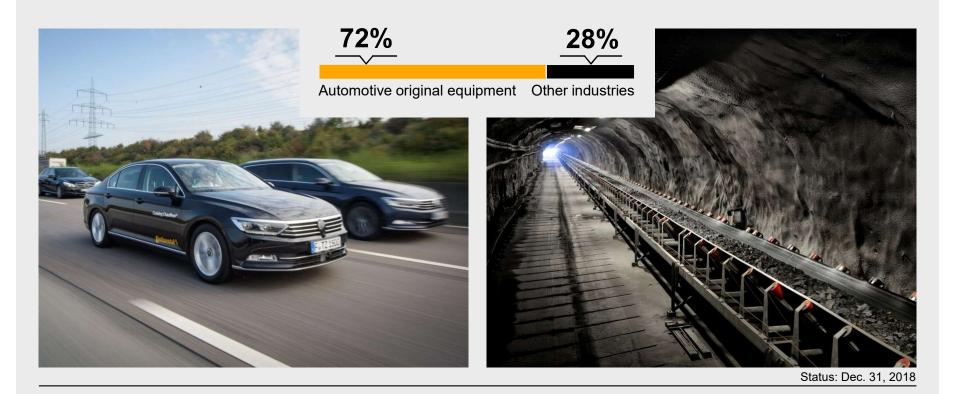
Central Functions Automotive

Corporate Function:

Five Strong Divisions

Chassis & Safety	Powertrain	Interior	Tires	ContiTech
Advanced Driver Assistance Systems (ADAS)	Engine & Drivetrain Systems	Body & Security	PLT Original equipment	Air Spring Systems
Hydraulic Brake Systems	Hybrid Electric Vehicle	Commercial Vehicles & Aftermarket	PLT, Repl. Business, EMEA	Benecke-Hornschuch Surface Group
Passive Safety & Sensorics	Powertrain Components	Infotainment & Connectivity	PLT, Repl. Business, The Americas	Conveyor Belt Group
Vehicle Dynamics		Instrumentation & Driver HMI	PLT, Repl. Business, APAC	Industrial Fluid Solutions
			Commercial Vehicle Tires	Mobile Fluid Systems
	Two Wheel Tires	Two Wheel Tires	Power Transmission Group	
				Vibration Control

Present Worldwide

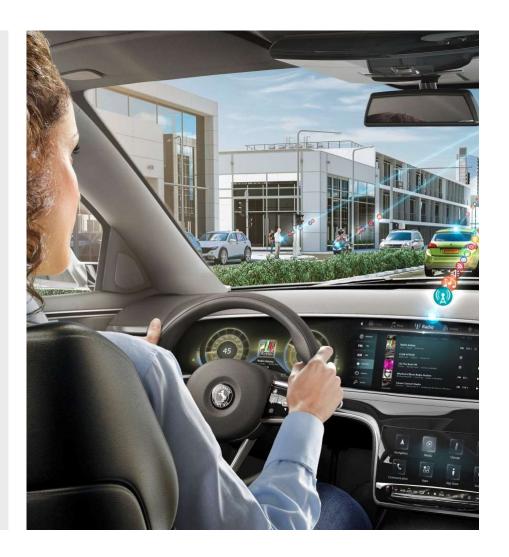


*Headquarters in Hanover

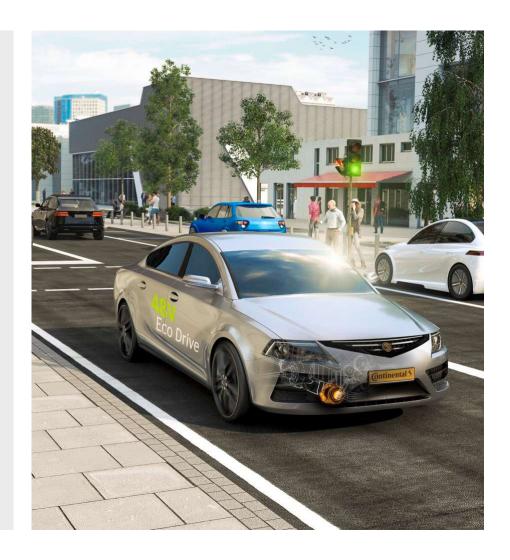
Status: Dec. 31, 2018

Distribution of Sales: Vehicle Manufacturers and Other Industries

Automated Driving


- Today's advanced driver assistance systems provide the basis for the automated driving of the future.
- Continental is using its full innovative power to drive forward this trend and developing intelligent technologies that take over more and more driving functions – as long as the driver wants them to.
- > **The advantage**: more safety, more convenience, more efficiency.

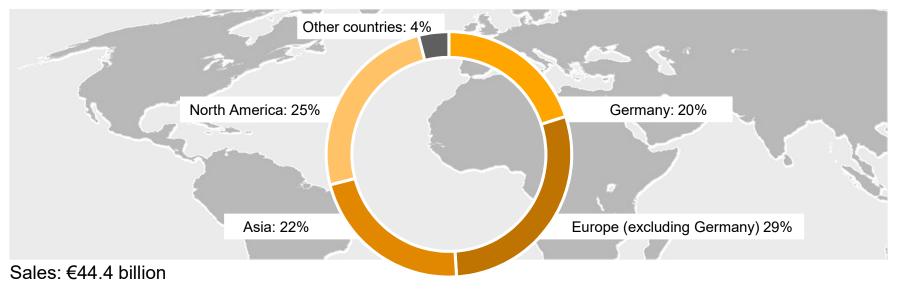
CUbE (Continental Urban mobility Experience)


Connectivity

- Continental connects vehicles and people with the digital world.
- We develop and enable holistic connectivity solutions. We provide connectivity within the vehicle itself as well as with other vehicles and the outside environment.
- New possibilities are also emerging from the development of intelligent transport systems. In the future, cloud-based software solutions will offer more convenience not only for the driver and passengers, but also for the transport industry.

Electric Mobility

- With the "Clean Power" vision, Continental demonstrates the opportunities offered by clean mobility.
- Continental offers vehicle manufacturers the components and systems to gradually bring tailor-made electrification to the roads. From start/stop technologies and 48 V and hybrid component, right up to systems for all-electric vehicles.
- Our innovative solutions not only make driving more environmentally compatible and affordable, they also make it more practical and fun.


Key Figures for 2018

	2018	2017
Sales	€44.4 billion	€44.0 billion
EBIT*	€4,027.7 million	€4,561.5 million
Adjusted EBIT**	€4,118.1 million	€4,746.9 million
Employees	243,226	235,473

^{*} Earnings before interest and taxes.

^{**} Before amortization of intangible assets from PPA, changes in the scope of consolidation, purchase price allocation and special effects.


Sales by Market in 2018

Status: Dec. 31, 2018

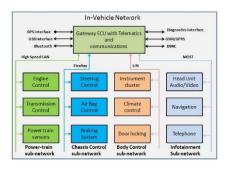
Cybersecurity in the Automotive Domain Agenda

Increasing Complexity

Increasing number of ECUs

) 1997: 5 ECUs in Audi A6

2007: about 50 ECUs in Audi A4


> today: about 80 to 100 ECUs

Change in ECU usage

- Traditionally one task per ECU
- New trend of
 - > distributing functions across ECUs
 - > Integration multiple functions on one ECU

Variety of Applications

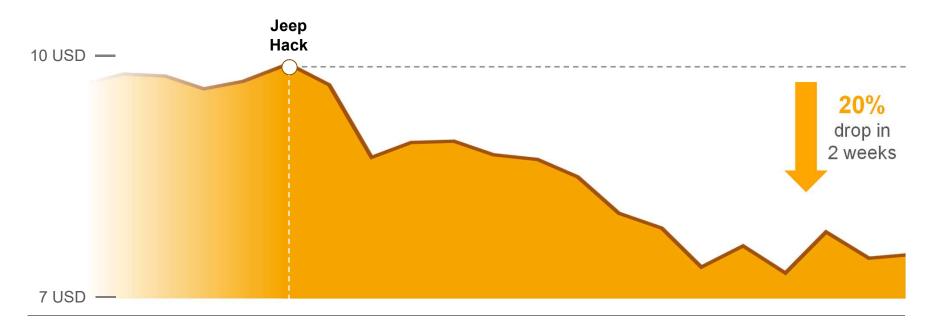
- Lane Assistance
- Collision avoidance
- Accident Reporting (eCall)
- Autonomous and Cooperative Driving

ECU: Electronic Control Unit

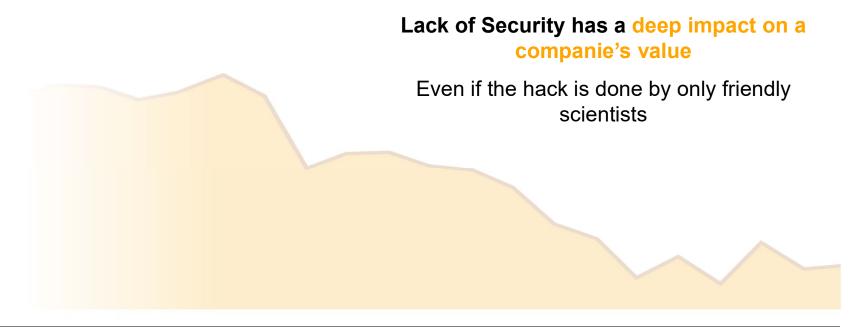
Understanding Security

Unfortunately, implementation attacks are hard to predict.

Consequences from a lack of security



Consequences


Stock Value Fiat Chrysler August 2015

MOB2 Guest Lecture Public November 19th, 2019 Dr. Markus Tschersich © Continental AG

Stock Value Fiat Chrysler August 2015

... and more attacks with increasing press perception

Networks: A Tire Pressure Monitoring System Case Study (Rutgers, USC) **2010:** Experimental Security Analysis of a Modern Automobile

(Center for Automotive Embedded Systems Security)

2010: Security and Privacy Vulnerabilities of In-Car Wireless

2007: Hackers can take over car navigation system (The Telegraph)

2005: RFID Chips in Car Keys and Gas Pump Pay Tags Carry Security Risks (John Hopkins University)

2005: Linux Bluetooth hackers hijack car audio (The Register)

2005: Hacking the Hybrid Vehicle (Wired)

2016: Nissan Leaf electric cars hack vulnerability disclosed (BBC)

2014: A Survey of Remote Automotive Attack Surfaces (IOActive)

2014: Most Hackable Cars (CNN Money)

2014: How to Hack a Car (Vice)

2014: The Robot Car of Tomorrow May Just Be Programmed to Hit You (Wired)

2013: Digital Carjackers Show Off New Attacks (Forbes)

2013: Jury Finds Toyota Liable in Fatal Wreck in Oklahoma (New York Times)

2013: Adventures in Automotive Networks and Control Units (IOActive)

2013: Car Hacking: Your Computer-Controlled Vehicle Could Be Manipulated Remotely (CBS)

2013: How to Hack Your Mini Cooper: Reverse Engineering CAN Messages on Passenger Automobiles (Defcon 21)

2011: Can Your Car be Hacked? (Car and Driver)

2011: Comprehensive Experimental Analyses of Automotive Attack Surfaces (Center for Automotive Embedded Systems Security)

< 2005

2004: DRIVING; Altering Your Engine With New Chip (NY

2003: Gentlemen, Start Hacking Your Engines (NY Times)

2005-2010

> 2010

2002: How To Hack Your Car (Forbes)

Odometer Example: Good old times

Expertise > Automotive mechanist

Tools > Specific tools or garage

Time > Hours

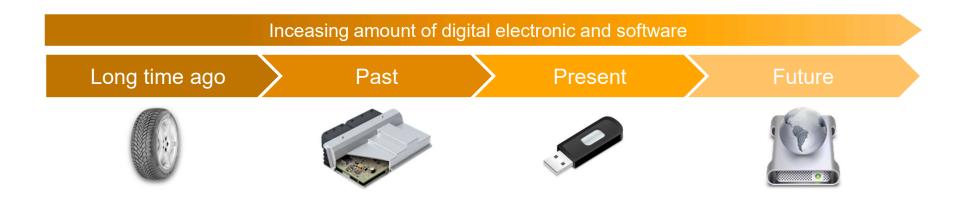
Evidence > Mechanical Traces

Video: https://www.youtube.com/watch?v=vUh-8GEhzJM

Odometer Example: Nowadays

Video: https://www.youtube.com/watch?v=orMsibfLcFY

Attackers and their Damage Categories

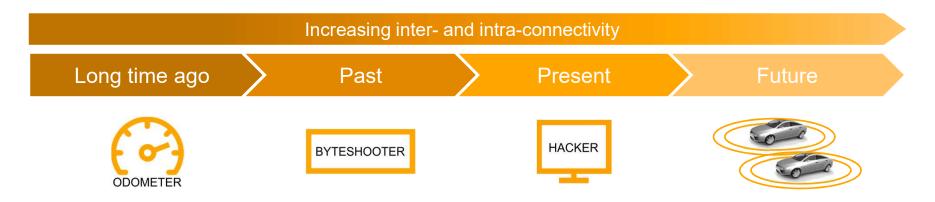

Stealing assets Thieves Stealing vehicles Manipulating vehicle data Owner/Driver Manipulating vehicle Settings Spoofing licences Stealing business secrets OEM/Tier-1 Conducting product piracy Software Elevating privilidges manufacturer Hacker, Virus, Stealing of personal data Malware Manipulating the functional safety

Damage Categories

- Property
-) Image
- Business Model
- Legislation
- > Know-How
- Reliability
- Functional Safety
- > Privacy

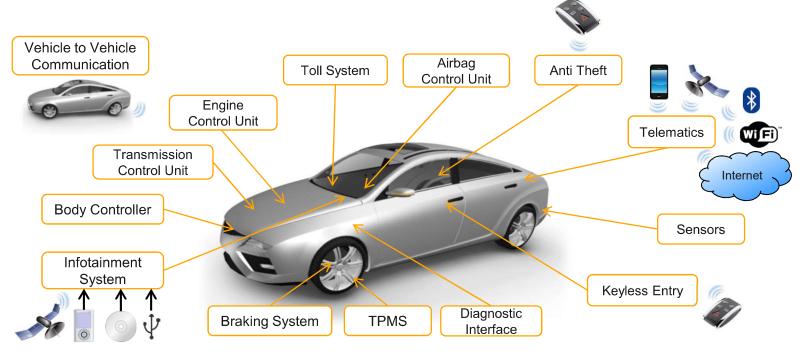
Trends on Automotive Products – IT Technology

- > Simple mechanical vehicles change to intelligent, connected, and software-based IT-Systems
- > Flexibility, compatibility, costs, and weight are driving the change


Trends on Automotive Products – Interconnectivity

- Evolutionary step from closed system to a complex interconnected and interactive communication party
- > The need for an efficient and safe traffic regulation is one driver next to infotainment and internet connectivity.

Trends on Automotive Products – Scaleability of Attacks



- > Attacks are scaling from single manipulations of ECUs to organized network wide attacks
- Driver for this development on various stakeholder (owner, companies, 3rd parties): fun, fame, sabotage

Automotive Security Threats

Increasing attack surface

Cybersecurity in the Automotive Domain Agenda

New Challenges of Automotive Megatrends

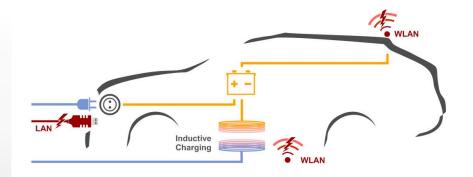
Increasing Threats and Attack Potential at the Horizon

Electric Mobility

Autonomous Driving

Information

Megatrend: Electric Mobility


Infrastructure Necessary to be Protected

Charging Infrastructure

- Connects Automotive to the critical infrastructure "Electric Power"
- Electromobility is highly depending on the availability of charging infrastructure
- Implications with NIS Directive Regulation on the horizon

Payment

Needs to be secured to avoid financial harm for supplier and/or customer

Megatrend: Electric Mobility

Attacks Based on Loss of Data Integrity

Attack on EV performance

- Different data sources used to extend range (weather, altitude difference, traffic volume)
- Manipulation can lead to unexpected performance of electronic vehicle

Attack on components

- Overheated battery triggered by manipulation of temperature sensor
- Will cause financial harm

Megatrend: Autonomous Driving

SAE J3016 - Driving Automation Definitions

	SAE Level	Name	Steering, Acceleration, Deceleration	Monitoring of Driving Environment	Fallback Performance	System Capability (Driving Modes)
Human driver monitors the driving environment	0	No Automation	Human	Human	Human	n/a
	1	Driver Assistance	Human and System	Human	Human	Some driving modes
	2	Partial Automation	System	Human	Human	Some driving modes
Automated driving system monitors the driving environment	3	Conditional Automation	System	System	Human	Some driving modes
	4	High Automation	System	System	System	Some driving modes
	5	Full Automation	System	System	System	All driving modes

Megatrend: Autonomous Driving

Automated Driving System takes over more responsibility

- Impact of errors/attacks increases due to higher range of functions
- Simple shut-down in case of attacks is not working
- Need for redundancy and fallback systems
- Higher impact on privacy due to increased need of data collection and processing

Megatrend: Information

New Opportunities and Risks of Big Data

Collection, processing and connectivity

- Improve driver assistant systems (Safety)
- More attractive/interactive infotainment systems
- Reduction of fuel/energy consumption
- Mobility Services, Smart Cities, Smart Home

Arising Risks of Big Data

- Increasing number of attack vectors
- Compliance with different legal privacy frameworks
- Higher attraction to data theft

Megatrend: Information

Over the Air is Enabler and Additional Risk

Opportunities

- Smart and fast way for bug fixing and security patches
- > Enables automotive app ecosystem
- Provides live information

Attack Vectors

- Connection interface can be attacked
- Risk of infected automotive apps

Cybersecurity in the Automotive Domain Agenda

Ensuring Device Reliability

Interplay of Functional Safety and Security Required

- Safety a discipline with a long history in automotive
- Functional Safety and Security need to engage with each other to ensure high quality products
- Both disciplines need to be considered by the organization.

MOB2 Guest Lecture

Function: Intended functional behavior

Functional Safety

Is there any risk resulting out of a faulty functional behavior?

Covered in Standard: ISO 26262

Safety in use / Safety of the intended functionality

Is there any risk resulting out of the fault free functional behavior?

Actually not standardized, in discussion for ISO 26262 2nd ed./SOTIF

Sensor HW
part fault
leads to
wrong
decision

Sensor
algorithm
takes wrong
decision out of
environment

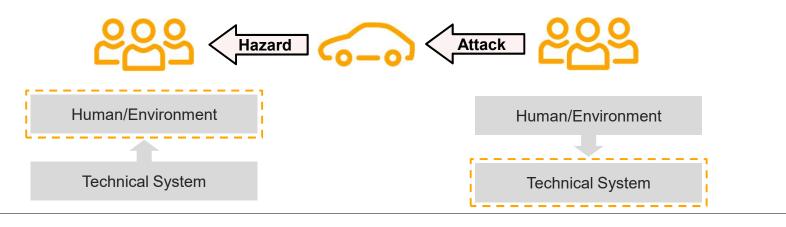
Sensor algorithm takes wrong decision due

takes wrong decision due to "jail break" SW

Cybersecurity

Is there any risk resulting out of a faulty functional behavior?

Annex in ISO 26262:2018 Sep. Standard: ISO-SAE 21434


Security vs. Functional Safety

Functional Safety

 Protect human against threats proceeded from (known) technical systems.

Security (IT/Cyber)

 Protect a technical system against attacks (basically unknown) as well as disturbances from the environment or caused by human.

Similarities between Safety and Security

Risk oriented approach

What can go wrong? How likely is it? What will the consequences be? (note: differences in probability estimations)

Development process

 Safe and secure software is achieved by using a systematic development approach rather than reactive patching

Testing

 Comprehensive testing is essential for confidence in the final product

Redundancy

 Double instances of safety/security mechanisms does not necessarily lead to double safety/security

Ultimate objective

Achieving a sufficiently safe/secure product

Culture and values

 Knowledgeable, motivated and committed management and employees is a success factor for achieving safe and secure products

Differences between Safety and Security

Classification of consequences

- In safety typically divided into several levels (e.g. SIL/ASIL/DAL)
- In security quite binary, system is either compromised or not

Threat analysis, risk assessment

- In safety we have pretty well known, static fault models and fault assumptions
- In security threats changes regarding motivation, knowledge and attack vectors

Non-experts understanding

- In safety the consequences are easily understandable
- In security the threat models are often met with scepticism and might be judged as paranoid

Knowledge of experience

- In the safety domain there is a culture of discussion and sharing of experience
- In security, business actors tend to keep their experiences to themselves, thus efficiently slowing down the collective expertise

Challenges of Security in Automotive

Variety of Challenges

Vulnerability in BMWs online-system ConnectedDrive

Compromised Entertainment **Acceptable?**

http://www.heise.de/autos/artikel/Sicherheitsluecke-in-BMWs-Online-System-ConnectedDrive-2533697.html 30.01.2015

Hackers remotely disrupt a Jeep on the highway

Compromised Breaking System **Acceptable?**

https://www.wired.com/video/2015/07/hackerswireless-jeep-attack-stranded-me-on-a-highway. 21.07.2015 Tesla App hacked: car stolen

Compromised Smart Phone Acceptable?

https://promon.co/blog/tesla-cars-can-be-stolenby-hacking-the-app/ 23.11.2016 **OEMs collect Big Data**

ADAC-Investigation:

Compromised Compliance Acceptable?

http://www.heise.de/newsticker/meldung/ADAC-Untersuchung-Autohersteller-sammeln-Daten-ingrossem-Stil-3227102.html

04.06.2016

Challenges of Security in Automotive

Uncomfortable consequences in common

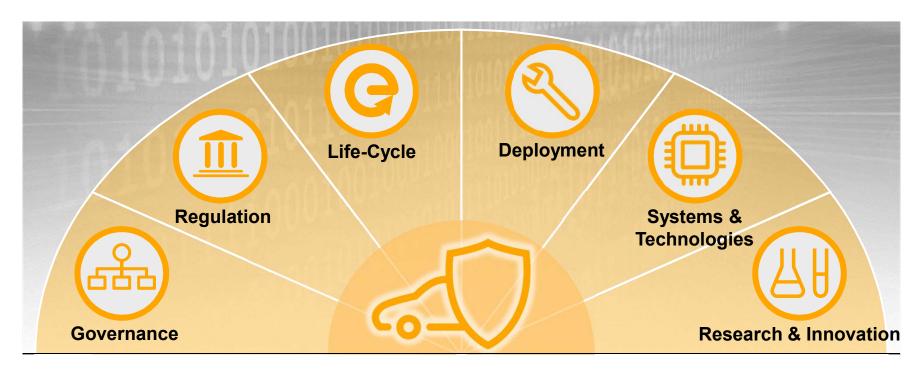
Tens of millions of airbags are defective. Even a minor fender-bender can cause these airbags to rupture, spraying metal shrapnel into drivers and passengers.

https://www.airbagrecall.com/ https://www.safercar.gov/rs/takata/takat alist.html

Recall Campaign

FCA: 1.4M Vehicles 24.07.2015

Affected are certain vehicles equipped with 8.4-inch touchscreens a


- 2013-2015 MY Dodge Viper specialty vehicles
- · 2013-2015 Ram 1500, 2500 and 3500 pickups
- 2013-2015 Ram 3500, 4500, 5500 Chassis Cabs
- 2014-2015 Jeep Grand Cherokee and Cherokee SUVs
- 2014-2015 Dodge Durango SUVs
- 2015 MY Chrysler 200, Chrysler 300 and Dodge Charger sedans
- 2015 Dodge Challenger sports coupes

Customers affected by the recall will receive a USB device that they software, which provides additional security features independer Alternately, customers may visit http://www.driveuconnect.com/sol Vehicle Identification Numbers (VINs) and determine if their vehicle

Address Challenges of Security in Automotive

Parts of the Holistic Approach

Part: Governance

Preparation of the Organisation Necessary

Management

- Security Strategy Consideration by Management for the overall strategy
- Processes
 Revise processes with security respective activities and work products
- Standardisation
 Harmonization of internal and external activities
- Compliance and Audits
 Ensure correct implementation of security measures over time

Culture

- Awareness of Management and Engineers
 Inform about security threats and their impact
- Trainings, Competence
 Management
 Ensure technical skills to address security threats appropriately
- Security Engineering Consider security in the design
- Lessons Learned
 Consider known threats and effective countermeasures

Sustainability

- Surveillance and Cyber-Defence
 Awareness about new threats appearing in the field
- Incident Management
 Effective and lean processes to
 mitigate security incident short-term
- Knowledge Management
 Documentation of effective solutions

Approach: Regulation

Not Exhaustive List of Regulations | 1

International

UNECE WP.29 TF Cybersecurity and OTA issues

Europe

- Joint Communication on "Resilience, Deterrence and Defence: Building strong cybersecurity for the EU" (JOIN (2017) 450
- Product-specific Certification, e.g. Tachograph, Event Data Recorder (AD), C-ITS
- General Data Protection Regulation
- NIS Directive (might be relevant in future)

Approach: Regulation

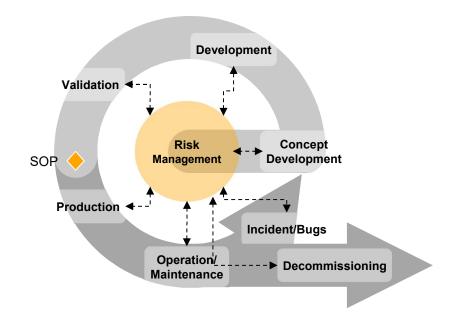
Not Exhaustive List of Regulations | 2

China

- > Cybersecurty Law (中华人民共和国网络安全法)
- ➤ Cryptographic Law Draft (中华人民共和国密码法)

USA

Self-Driving Car Act



Part: Life-Cycle

Consider Cybersecurity from Cradle to Grave

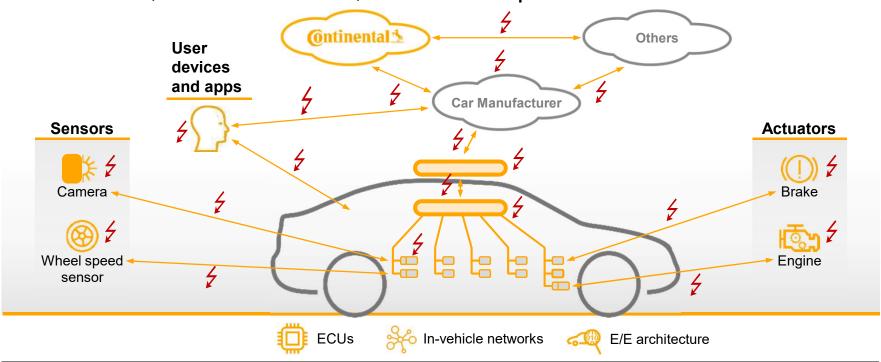
- Low impact by Cybersecurity
- > Shall be stable within organisations
- Product independent within organization
- Slight tailoring for specific products
- Clear interfaces due to harmonization in distributed development

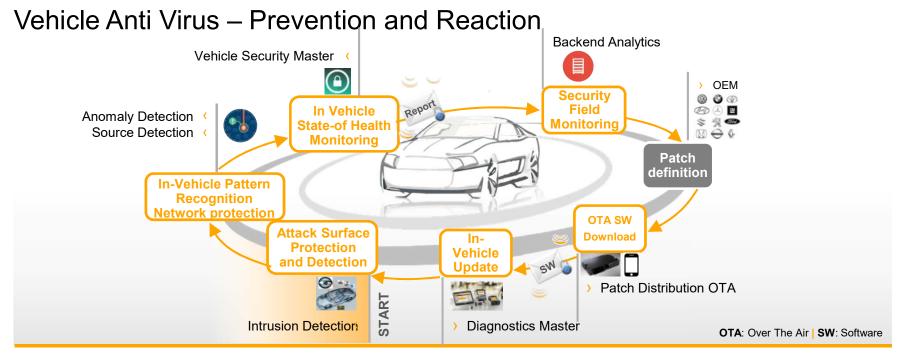
Part: Deployment

Establish Cybersecurity on the Operational Level

- Medium impact by Cybersecurity
- Defined methodologies for transparent and comprehensible decisions, e.g.

 Risk Management

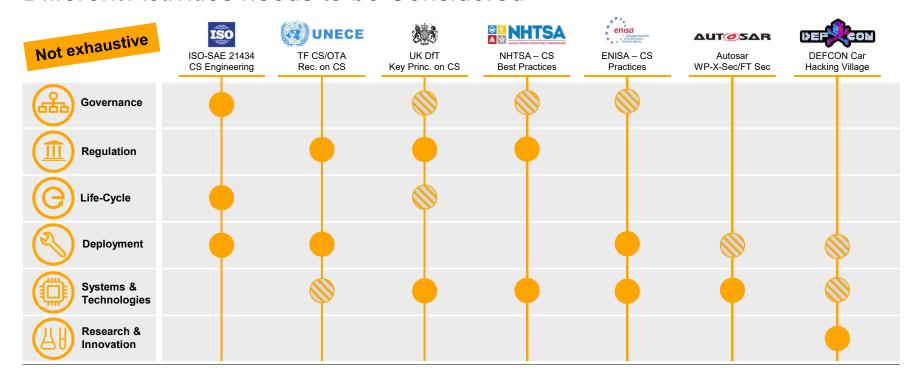

 - Security Testing
- Supply Chain Management
 Clear assignment of responsibilitiesEngineering Interface Agreement
- Dedicated Security Services
 Online Trust Center
- Configuration & Vulnerability Management


Part: Systems & Technologies

Secure Data, Secure Network, Secure Components

Part: Research & Innovations

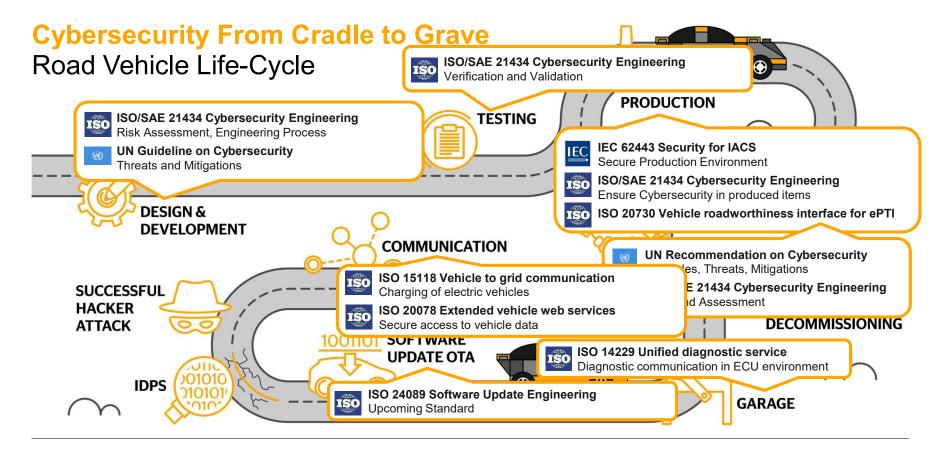
Cyber Security needs to be continuously observed and if needed be patched


MOB2 Guest Lecture

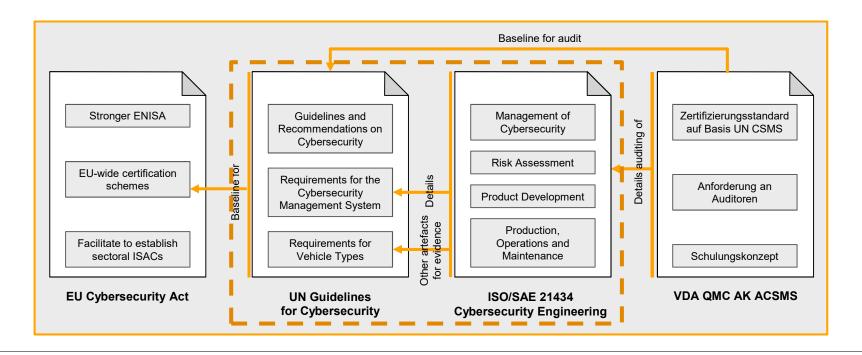
Public

Challenges of Security in Automotive

Different Activities needs to be Considered



Cybersecurity in the Automotive Domain Agenda



MOB2 Guest Lecture

November 19th, 2019 Dr. Markus Tschersich © Continental AG

Cybersecurity in Automotive

Relation of Current Activities

MOB2 Guest Lecture


Goals of the Standardization Project

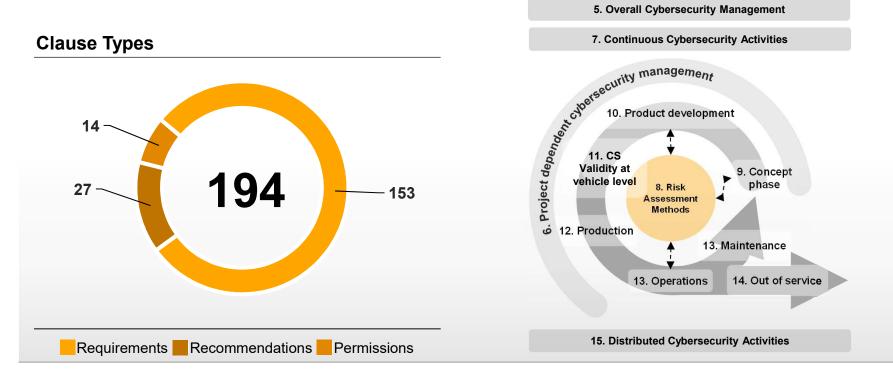
The future standard shall...

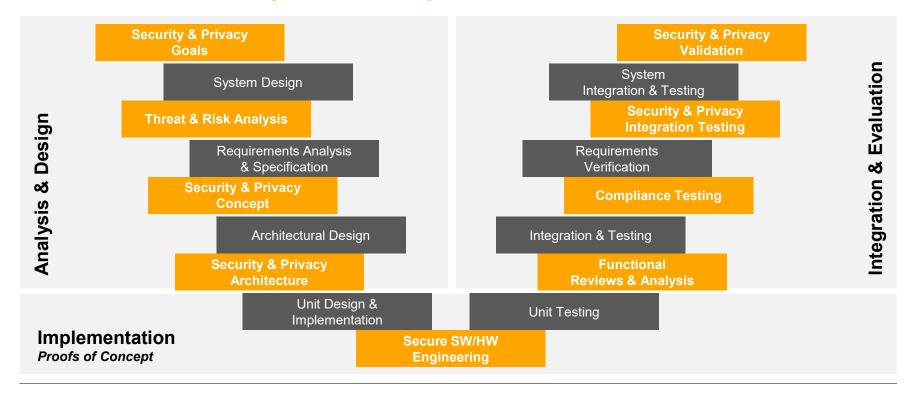
- Give uniform definition of notions relevant to automotive security
- Enable better solutions due to harmonized valuechain
- Specify minimum requirements on security engineering process and activities and define wherever possible criteria for assessment
- 5 Facilitate bi-directional communication along the supply-chain
- Describe the state of the art of security engineering in automotive E/E development

National Delegations

MOB2 Guest Lecture Public November 19th, 2019 Dr. Markus Tschersich © Continental AG

Involved Organizations

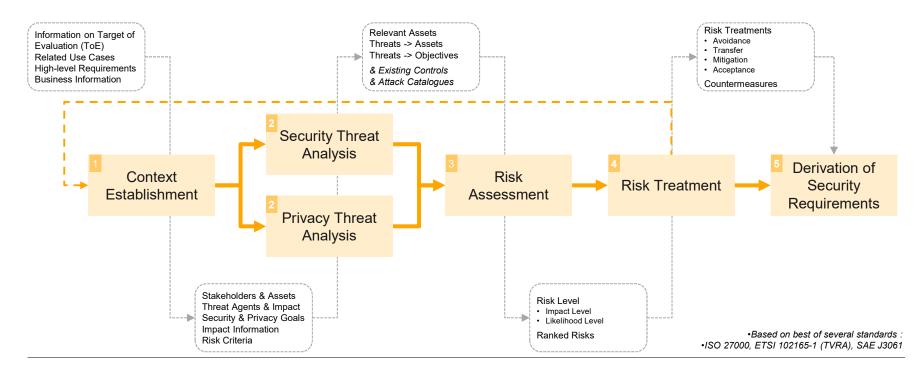




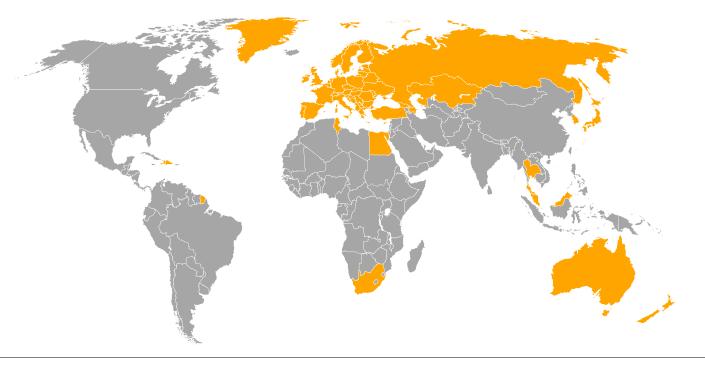
Outlook to the Content



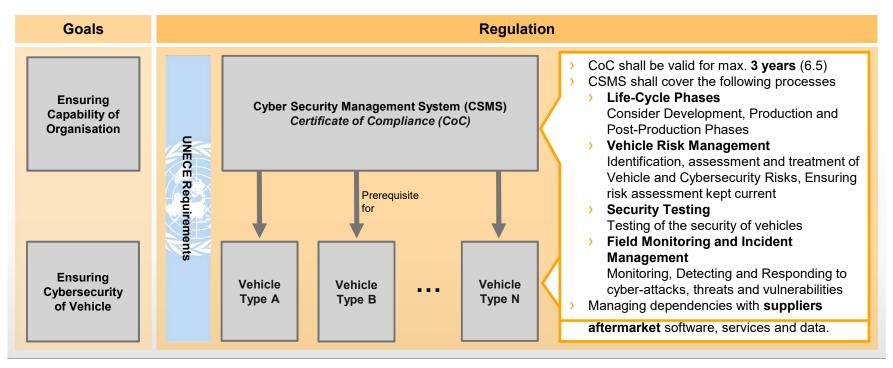
V-Model: Security & Privacy



V-Model: Security & Privacy

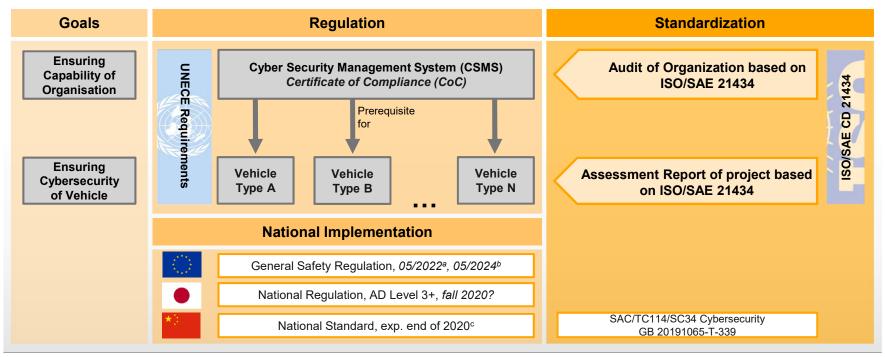

Threat Analysis and Risk Assessment (TARA*)

World Forum for Harmonization of Vehicle Regulations


UNECE WP.29 | 1958 Agreement Contracting Parties

UNECE Regulation on Cybersecurity

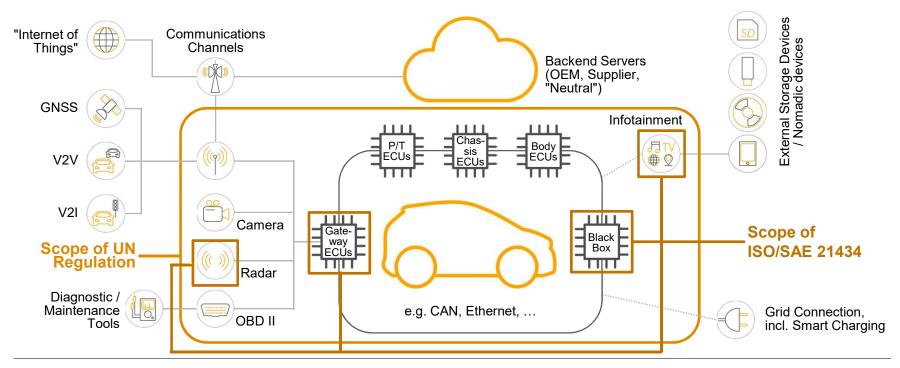
Requirements on the Organization and the Vehicle Types



MOB2 Guest Lecture

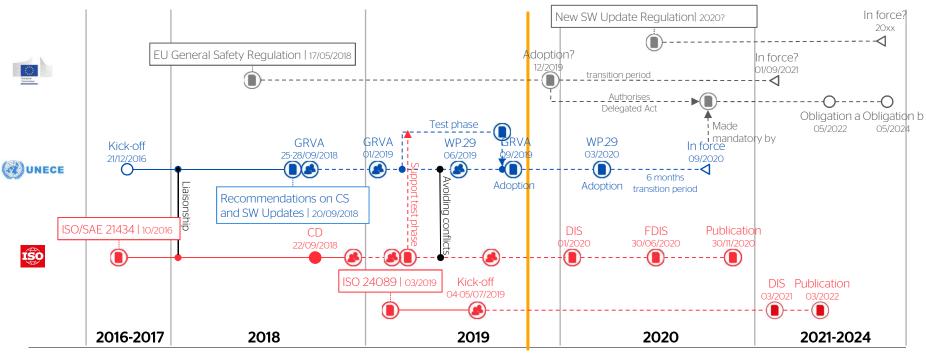
UNECE Requirements on Cybersecurity for Type Approval

ISO/SAE 21434 can Prepare Supply-Chain for Compliance



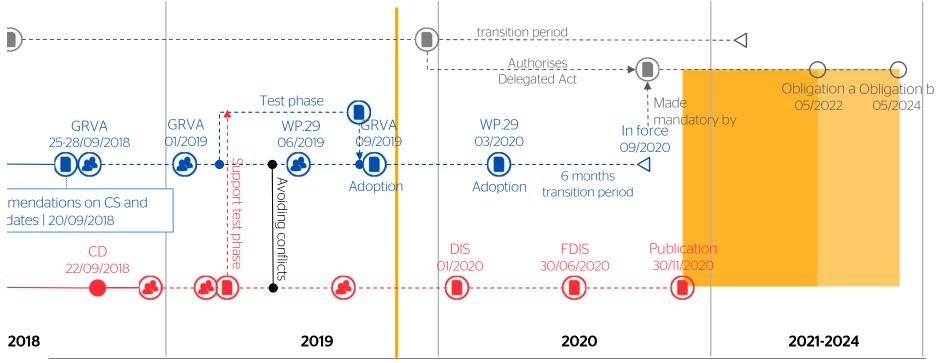
a: New European whole vehicle types | b: first registration of vehicles, entry to EU market | c: not 1958 agreement but adoption |

UNECE Requirements on Cybersecurity for Type Approval


Different Scopes of UN Regulation and ISO/SAE 21434

Roadmap for Implementation in Europe

Timeline of Cybersecurity and Software Update Activities



Roadmap for Implementation in Europe

Timeline of Cybersecurity and Software Update Activities

Cybersecurity in the Automotive Domain Agenda

Entry Possibilities at Continental

This is Continental

- > Truly international team around the globe
- > Performance-oriented working atmosphere
- Early responsibility and exciting job challenges
- Achieving exceptional results through passion
- Open & informal culture: open doors & open minds
- Innovative Technology
- > Significant contribution to sustainable mobility

Entry Possibilities at Continental

From Internship to Permanent Position

Possible entries at Continental AG

Students

Graduates

Professionals

Internship Working Students

Thesis

Continental Trainee & Graduates Programs

Direct Entry

Direct Entry

Entry Possibilities at Continental

Internship and Thesis

Requirements:

- > Apply 2 to 3 months before your preferred internship start date
- > Duration: 3-6 months
- Current certificate of matriculation
- Very good language skills in English
- Proficient experience in working with MS Office (esp. Word, Excel, Power Point)

Take your chance!

Apply online:

Have we sparked your interest?

Then spark ours!

www.careers-continental.com

www.facebook.com/ ContinentalCareer

www.continental-people.com

Have we sparked your interest?

Then spark ours!

www.co-pace.com

