
R0 G49 B82

R105 G133 B153

R111 G118 B127

R226 G0 B116

R255 G71 B167

R255 G185 B222

R0 G0 B00

Chair of Mobile Business &

Multilateral Security

Business Informatics 2 (PWIN)

WS 2017/2018

ICS Development II

Object Orientation & UML

Prof. Dr. Kai Rannenberg

Deutsche Telekom Chair of Mobile Business & Multilateral Security

Johann Wolfgang Goethe University Frankfurt a. M.

Lecture 09

1

R0 G49 B82

R105 G133 B153

R111 G118 B127

R226 G0 B116

R255 G71 B167

R255 G185 B222

R0 G0 B00

Agenda

 Object-Oriented Approach

 Unified Modelling Language (UML)

 Model-Driven Development and Architectures

2

R0 G49 B82

R105 G133 B153

R111 G118 B127

R226 G0 B116

R255 G71 B167

R255 G185 B222

R0 G0 B00

The Idea of

Object Orientation (OO)

 OO sees things that are part of the real world.

 OO-Models represent only the relevant aspects of real world things.

 Objects store their data by themselves and encapsulate them for

protection from other objects.

• Name

• Phone No.

• E-Mail

• Teaching Subjects

3

R0 G49 B82

R105 G133 B153

R111 G118 B127

R226 G0 B116

R255 G71 B167

R255 G185 B222

R0 G0 B00

Object-Oriented Software

Development

 Consideration of software as collection of
interacting objects that work together in order
to accomplish tasks.

 Objects – things in a computer system that can
respond to messages.

 Conceptually, no processes, programs, data entities,
or files are defined – just objects.

4

R0 G49 B82

R105 G133 B153

R111 G118 B127

R226 G0 B116

R255 G71 B167

R255 G185 B222

R0 G0 B00

Basic OO Elements

 Class

 A class is a template for an object. It contains variables,

constants and methods.

 Object

 Objects are instances of classes, which exist during runtime.

Multiple objects can be instantiated from a single class.

 Association

 Relation between classes or objects

 Instantiation

 Creation of objects according to the template of a class during

runtime

 5

R0 G49 B82

R105 G133 B153

R111 G118 B127

R226 G0 B116

R255 G71 B167

R255 G185 B222

R0 G0 B00

Basic OO Elements

Book Library

1..* 0..*

Novel Non-fiction book City library

Class

Object

Association

Relation

Class - Object
Multiplicity

6

R0 G49 B82

R105 G133 B153

R111 G118 B127

R226 G0 B116

R255 G71 B167

R255 G185 B222

R0 G0 B00

Basic OO Concepts

 Encapsulation

 Data is stored in an object and can only be accessed via the offered
methods.

 Inheritance

 Classes can inherit attributes or methods from other classes. The
bequeathing class is called “super class” or “parent class”. The inheriting
class is called a “subclass”.

MyCounter

- count

+ increase()
+ decrease()

Increasing/decreasing

the “count” property only

works by sending a message to

the “increase” or “decreasing”

operation.

Car

Convertible Roadster Coupé

Class

Attribute

Methods

7

R0 G49 B82

R105 G133 B153

R111 G118 B127

R226 G0 B116

R255 G71 B167

R255 G185 B222

R0 G0 B00

Basic OO Concepts

 Messages

 A message is sent to an object in order to instruct it to call a

method.

Polymorphism

 If a message is sent to objects of different classes, these objects

return different results, as the called method can be implemented

differently for each object.

 For instance, the message “Print” sent to the objects “Address List”

and “Order”

MyCounter

- count

+ increase()
+ decrease()

MyCounter.increase(1)

Address List

+ print()

Order

+ print()

Object.print()

8

R0 G49 B82

R105 G133 B153

R111 G118 B127

R226 G0 B116

R255 G71 B167

R255 G185 B222

R0 G0 B00

OO Terminology and Concepts

 Object-oriented Analysis (OOA)

 Object-oriented Design (OOD)

 Object-oriented Programming (OOP)

9

R0 G49 B82

R105 G133 B153

R111 G118 B127

R226 G0 B116

R255 G71 B167

R255 G185 B222

R0 G0 B00

Object-Oriented Analysis (OOA)

 OOA describes a system as a group of interacting

objects, generating a conceptual model within a

problem domain.

 This results in a description of how the software is

required to behave.

 The conceptual model does not describe any

implementation details. Those are developed in the

design phase.

10

R0 G49 B82

R105 G133 B153

R111 G118 B127

R226 G0 B116

R255 G71 B167

R255 G185 B222

R0 G0 B00

Object-Oriented Design (OOD)

 Takes the conceptual model generated by object
oriented analysis as input.

 Refines each object type to be implemented with a
specific language according to its environmental
context

 Takes into account the chosen architecture,
technological and environmental constraints

 Typical Output: Class-Diagram

11

R0 G49 B82

R105 G133 B153

R111 G118 B127

R226 G0 B116

R255 G71 B167

R255 G185 B222

R0 G0 B00

Object-Oriented

Programming (OOP)

 OOP is a programming paradigm for software

 It centres around the concept of “Objects”, which

consist of data structures and methods

 It takes the results of the OOD as input

 OO languages: Java, C++, C#.NET, VB.NET

12

R0 G49 B82

R105 G133 B153

R111 G118 B127

R226 G0 B116

R255 G71 B167

R255 G185 B222

R0 G0 B00

OO Development Process

 Object-oriented Analysis (OOA)

 Object-oriented Design (OOD)

 Object-oriented Programming (OOP)

 OO Software

13

R0 G49 B82

R105 G133 B153

R111 G118 B127

R226 G0 B116

R255 G71 B167

R255 G185 B222

R0 G0 B00

Agenda

 Object-Oriented Approach

 Unified Modelling Language (UML)

 Model-Driven Development and Architectures

14

R0 G49 B82

R105 G133 B153

R111 G118 B127

R226 G0 B116

R255 G71 B167

R255 G185 B222

R0 G0 B00

Unified Modelling Language (UML)

 Modelling language developed by Booch, Jacobson und
Rumbaugh in 1996

 Standard of the OMG (Object Management Group)

 Current Version: 2.5 (March 2015)

 Standardisation …

 of different object-oriented notations and

 of methods through all phases of the software
development

by using different types of models (data-oriented,
object-oriented, process-oriented, etc.).

15

R0 G49 B82

R105 G133 B153

R111 G118 B127

R226 G0 B116

R255 G71 B167

R255 G185 B222

R0 G0 B00

UML Concept

 Supports analysis and design of object-oriented software
systems

 UML includes multiple Views on a system

 Each View specifies and documents a system from a
different perspective.

 Each View is supported by one or more diagrams.

 UML is not a process model UML does not define a

process for creating UML models.

16

R0 G49 B82

R105 G133 B153

R111 G118 B127

R226 G0 B116

R255 G71 B167

R255 G185 B222

R0 G0 B00

UML Structure

 Basic elements
 Object-oriented notation elements

 Additional elements to describe the modelled system (e.g.
activities, actor, etc.)

 Diagrams
 Composition of notation elements

 Represents a certain View on a system

 Complete model
 The complete model is based on the basic elements.

 Different Views on the complete model by different diagram
types

17

R0 G49 B82

R105 G133 B153

R111 G118 B127

R226 G0 B116

R255 G71 B167

R255 G185 B222

R0 G0 B00

UML Structure

Complete model

Diagrams

Basic elements

18

R0 G49 B82

R105 G133 B153

R111 G118 B127

R226 G0 B116

R255 G71 B167

R255 G185 B222

R0 G0 B00

UML Views

 Use case view

 Logical view

 Implementation view

 Process view

 Deployment view

19

Logical

View

Deployment

View

Process

View

Implementation

View

Use Case

View

Source: Hitz et al., 2015

R0 G49 B82

R105 G133 B153

R111 G118 B127

R226 G0 B116

R255 G71 B167

R255 G185 B222

R0 G0 B00

Use Case View

 Describes high level functionalities of a system

 Used by stakeholders, designers, developers

and testers

 Represented by use case diagrams

 Serves as the basis for other views

20

R0 G49 B82

R105 G133 B153

R111 G118 B127

R226 G0 B116

R255 G71 B167

R255 G185 B222

R0 G0 B00

Logical View

 Describes functionalities to be designed and

implemented

 Describes static and dynamic aspects of a

system

 Mostly used by designers and developers

 Represented by class diagrams, object diagrams

(static view), state diagrams, interaction and

activity diagrams (dynamic view)

21

R0 G49 B82

R105 G133 B153

R111 G118 B127

R226 G0 B116

R255 G71 B167

R255 G185 B222

R0 G0 B00

Implementation View

 Describes the organisation of software

components

 It divides the logical entities into actual

software components

 Represented by component diagrams

 Mostly used by developers

22

R0 G49 B82

R105 G133 B153

R111 G118 B127

R226 G0 B116

R255 G71 B167

R255 G185 B222

R0 G0 B00

Process View

 Describes processes in a system

 Mostly used by developers and testers

 Represented by state, interaction and activity

diagrams

 Supports concurrency and handling of

asynchronous events

23

R0 G49 B82

R105 G133 B153

R111 G118 B127

R226 G0 B116

R255 G71 B167

R255 G185 B222

R0 G0 B00

Deployment View

 Describes physical architecture and

assignment of components to architectural

elements

 Mostly used by designers, developers and

managers

 Represented by package, component and

deployment diagrams

24

R0 G49 B82

R105 G133 B153

R111 G118 B127

R226 G0 B116

R255 G71 B167

R255 G185 B222

R0 G0 B00

UML Diagrams

Examples

 Use case diagram

 Class diagram

 Object diagram

 Activity diagram

 Sequence diagram

 Collaboration diagram

 State diagram

 Component diagram

 Deployment diagram

Structural diagrams

Use case diagram

Behavioural diagrams

Architectural diagrams Architectural elements

Dynamic elements

Static elements

25

R0 G49 B82

R105 G133 B153

R111 G118 B127

R226 G0 B116

R255 G71 B167

R255 G185 B222

R0 G0 B00

Use Case Diagram

 Use cases describe the functionality, which a system has to

provide

 The sum of all “Use cases” comprises the technical

requirements of a system.

 Use cases define the interfaces between a user and the

system

 Specification is developed together with the

client/customer

26

R0 G49 B82

R105 G133 B153

R111 G118 B127

R226 G0 B116

R255 G71 B167

R255 G185 B222

R0 G0 B00

 Use Case

 Representation of a sequence of actions that provides

value to an actor.

 User of the system

 Association

 Interaction of an actor with a use case

UseCase

Actor

Actor

UseCase

 27

Use Case Diagram

Notation Elements

R0 G49 B82

R105 G133 B153

R111 G118 B127

R226 G0 B116

R255 G71 B167

R255 G185 B222

R0 G0 B00

 Generalisation

 Generalisation of Use Cases

 UseCase2 generalises the behaviour of UseCase1

UseCase1 UseCase2
Repair Computer

Repair PC Repair Mac

 28

Use Case Diagram

Notation Elements

R0 G49 B82

R105 G133 B153

R111 G118 B127

R226 G0 B116

R255 G71 B167

R255 G185 B222

R0 G0 B00

 Extends

 Extends a Use Case

 UseCase2 extends UseCase1

 Includes

 Inclusion of a Use Case

 UseCase1 includes the behaviour of UseCase2

<<extend>>
UseCase2 UseCase1

<<extend>>
Check Credit

Standing

Get external

expertise

<<include>>
UseCase2 UseCase1

Check Stock
Process

Order

<<include>>

 29

Use Case Diagram

Notation Elements

R0 G49 B82

R105 G133 B153

R111 G118 B127

R226 G0 B116

R255 G71 B167

R255 G185 B222

R0 G0 B00

Use Case Diagram

(Example)

Check-In
automatisches

Check-In
Express Check-In

Boardingkarte
aushändigen

Boarding

Gepäckabfertigung

Passagier
Check-In Beauftragter

Zollbehörde des Flughafens

Check-In Agent
Passenger

Automated

Check- In

Delivery of

Boarding

Ticket

Baggage Check-In Customs Authority

30

R0 G49 B82

R105 G133 B153

R111 G118 B127

R226 G0 B116

R255 G71 B167

R255 G185 B222

R0 G0 B00

Structural Diagrams

 Class diagrams

 Representation of the static structure of a software

system

 Description of logical relations between structural

elements

 No activity or control logic

 Object diagrams

 Instances of a class diagram

 „Snapshot“ of a system during runtime

31

R0 G49 B82

R105 G133 B153

R111 G118 B127

R226 G0 B116

R255 G71 B167

R255 G185 B222

R0 G0 B00

Class

UML Class

 Classes are represented by rectangles, which
include the name of the class, its attributes
and methods.

 The class name is in singular and starts with
an upper case letter.

 Attributes and methods are separated by
horizontal lines.

 „+/-“: Attribute/Method is public/private

Class

- Attribute

+ method1()

+ method2()

Class

Person

- Name

+ displayName()

+ changeName()

 32

R0 G49 B82

R105 G133 B153

R111 G118 B127

R226 G0 B116

R255 G71 B167

R255 G185 B222

R0 G0 B00

UML Class

 Class attributes

 Class attributes belong to the class, not to the object.

 Class attributes have the same value for all instances (objects).

For instance, attribute „Number“ to count the number of

created objects for a class.

 Class attributes are underlined in the class diagram.

 Class methods

 Class methods are executed within the class not on the object.

 E.g. „count number of created objects of the class“

 The class method is underlined in the class diagram.

33

R0 G49 B82

R105 G133 B153

R111 G118 B127

R226 G0 B116

R255 G71 B167

R255 G185 B222

R0 G0 B00

Abstract Classes

 Definition / aggregation of common properties

 An abstract class does not allows objects to be instantiated.

 Template to create subclasses

 Abstract methods get “overwritten” by default

 The name of abstract classes is written in italic.

Fahrzeug

PKW Schiff Flugzeug

Vessel

Car Ship Airplane

 34

R0 G49 B82

R105 G133 B153

R111 G118 B127

R226 G0 B116

R255 G71 B167

R255 G185 B222

R0 G0 B00

Associations

 Describes the relationship between two classes

 It is represented by a line connecting the two classes.

 The multiplicity min..max attached to the association defines the minimal or
maximal number of associations between the objects of the two classes.

(*) denotes any number of objects.

1 1..*

Multiplicity

Class

Class2

- Attribute

+ method1()

+ method2()

Class

Class1

- Attribute

+ method1()

+ method2()

35

R0 G49 B82

R105 G133 B153

R111 G118 B127

R226 G0 B116

R255 G71 B167

R255 G185 B222

R0 G0 B00

Associations

 Aggregation

 Denotes a

„has a“ relationship

 Composition

 Composition is a stronger

variant of the aggregation

 Denotes an “owns a”

relationship

Ganzes Teil

0..*

Ensemble Fraction

PKW Motor

1 1

Fahrgestell

1

Ganzes existenzabh. Teil

1 0..*

Ensemble
Existing Dependent

Fraction

Auftrag Auftragsposition

1 1..*

Contract Order Item

Car Engine

Vehicle

Chassis

1

 36

R0 G49 B82

R105 G133 B153

R111 G118 B127

R226 G0 B116

R255 G71 B167

R255 G185 B222

R0 G0 B00

Inheritance

 Denotes an relation between
parent class and subclass

 Is represented by a line with an
empty arrow at the end,
pointing towards the parent
class

 Class2 inherits from Class1.

 Purpose:
 Reuse code, by objects which can

be based on previously created
objects

Class

Class1

Class

Class2

Class

User

Class

Employee

 37

R0 G49 B82

R105 G133 B153

R111 G118 B127

R226 G0 B116

R255 G71 B167

R255 G185 B222

R0 G0 B00

Instantiation

 Representation of the relation “class-object“

 An object is an instance of a class.

 Class

 Attributes

 Methods

 Object

 Attribute values

 Messages

Klasse1

Objekt1:Klasse1 Objekt2:Klasse1

Class1

Object1: Class1 Object2: Class1

 38

R0 G49 B82

R105 G133 B153

R111 G118 B127

R226 G0 B116

R255 G71 B167

R255 G185 B222

R0 G0 B00

Class Diagram

Klasse1

Klasse2Klasse3

1 0..*

Objekt1:Klasse2

Klasse4

Klasse5

1 *

1

*

Class1

Class2 Class3

Class4

Class5

Object1: Class2

39

R0 G49 B82

R105 G133 B153

R111 G118 B127

R226 G0 B116

R255 G71 B167

R255 G185 B222

R0 G0 B00

Class Diagram (Example)

+FileManager()
+readData() : void
+writeData() : void

-userFile : string
-dataFile : string
-user : string

FileManager
«interface»

GUI

+Medium()

-date : string
+book : int
+Magazine : int
+CD : int

Medium

+User()
+return() : void
+lend() : void
+searchDate() : Medium
+searchAuthor() : Medium
+search() : Medium

-userNumber : int

User

+BuchManagement()
+lend() : void
+search() : void
+return() : void
+getAllBooks() : void

BookManagement

+lend() : void
+chair()

Chair

+coworker()
+lend() : void

-firstName : string

Assistent / Coworker

40

R0 G49 B82

R105 G133 B153

R111 G118 B127

R226 G0 B116

R255 G71 B167

R255 G185 B222

R0 G0 B00

Activity Diagram

 Activity diagrams are used to model workflows in a system.

 Central element “Activity”: An activity is any kind of action.

 Activities are structured by responsibilities.

 Different views:

 Conceptional View
 e.g. business processes

 Implementation View
 e.g. methods of objects

41

R0 G49 B82

R105 G133 B153

R111 G118 B127

R226 G0 B116

R255 G71 B167

R255 G185 B222

R0 G0 B00

Activity Diagram

Notation Elements

Notation elements

 Initial state/final state

 Activity

 Decision

 Split/join

 Responsibility

 Activity flow

ActionState1

42

R0 G49 B82

R105 G133 B153

R111 G118 B127

R226 G0 B116

R255 G71 B167

R255 G185 B222

R0 G0 B00

Activity Diagram

Partition3Partition2Partition1

Aktivität 1

Aktivität 2 Aktivität 3

Aktivität 4 Aktivität 5

Aktivität 6

[Bedingung 1] [Bedingung 2]

[Anfang]

[Ende]

Activity 1

Activity 2 Activity 3

Activity 4 Activity 5

Activity 6

[Condition 1] [Condition 2]

[Initiation]

[Conclusion]

43

R0 G49 B82

R105 G133 B153

R111 G118 B127

R226 G0 B116

R255 G71 B167

R255 G185 B222

R0 G0 B00

Activity Diagram (Example)

44

R0 G49 B82

R105 G133 B153

R111 G118 B127

R226 G0 B116

R255 G71 B167

R255 G185 B222

R0 G0 B00

Agenda

 Object-Oriented Approach

 Unified Modelling Language (UML)

 Model-Driven Development and Architectures

45

R0 G49 B82

R105 G133 B153

R111 G118 B127

R226 G0 B116

R255 G71 B167

R255 G185 B222

R0 G0 B00

Model-driven Development (MDD)

 MDD is a concept for the development
of software

 The software system is described by an
abstract model (e.g. based on UML)

 The abstract model is typically
independent from the target
programming language, OS platform or
other any underlying technology

 The abstract model allows an
automatic transformation into code for
multiple target OS platforms

 The resulting code may vary from
skeleton classes to complete software
products

Abstract Model

Windows MacOS

Linux

Code Generation

Java, .Net, Objective-C

46

R0 G49 B82

R105 G133 B153

R111 G118 B127

R226 G0 B116

R255 G71 B167

R255 G185 B222

R0 G0 B00

What is an Abstract Model?

 Abstraction of the real software system (not the real

world)

 Comprised of only the relevant aspects of a system –

irrelevant ones are ignored

 Different abstraction levels are possible

User

Request

Data

System

47

R0 G49 B82

R105 G133 B153

R111 G118 B127

R226 G0 B116

R255 G71 B167

R255 G185 B222

R0 G0 B00

Round-Trip Engineering

 Modifications to the model can automatically

be transformed into code and vice versa.

Model Code

Forward Engineering

Reverse Engineering

48

R0 G49 B82

R105 G133 B153

R111 G118 B127

R226 G0 B116

R255 G71 B167

R255 G185 B222

R0 G0 B00

Automation in the

Development Process

 MDD promotes automation within the development process.

 Automated analysis and verification of model

 Since models do not contain implementation details they are easier to analyse.

 Automated code generation from model, which guarantees the

conformance to the model

 Runtime monitoring based on a model

 Runtime monitoring makes sure that the implementation follows the behaviour

specified in the model.

 Automated test generation

 Models can be used to generate test cases for the implementation.

49

R0 G49 B82

R105 G133 B153

R111 G118 B127

R226 G0 B116

R255 G71 B167

R255 G185 B222

R0 G0 B00

Benefits of MDD

 Reduced development time

 The model is timeless: It will age with the domain and not with the
technology.

 Improved documentation of the software system
 A model is a better documentation than code

 Improved readability – especially by non IT-personnel

 Because of automated generation always consistent with the code

 The system can be adjusted more easily.

 Platform and programming language independence

 …

Source: Based on Scheier Software Engineering 2011

50

R0 G49 B82

R105 G133 B153

R111 G118 B127

R226 G0 B116

R255 G71 B167

R255 G185 B222

R0 G0 B00

Model-Driven Architecture (MDA)

 MDA was introduced by the Object Management Group (OMG).

 MDA separates the business and application logic from the

underlying implementation platform.

 MDA is a forward engineering approach where first abstract model

diagrams are developed which are later transformed to code.

 The goal of MDA is to separate the conceptual design from the

implementation architecture.

Source: OMG, 2011

51

R0 G49 B82

R105 G133 B153

R111 G118 B127

R226 G0 B116

R255 G71 B167

R255 G185 B222

R0 G0 B00

Model-Driven Architecture

Development Process

 Developers develop platform independent

models (PIM) for the software (e.g. readable

design models or UML).

 The platform independent models document

the business functionality of a software ‒

independent from the technology-specific

code.

 After the target implementation platform

was chosen, the platform independent

models can automatically be translated to

platform specific models (PSM).

 The platform specific models are used to

guide the implementation for the chosen

platform.

Platform Independent Model

(PIM)

Platform Specific Model

(PSM)

Code

52

R0 G49 B82

R105 G133 B153

R111 G118 B127

R226 G0 B116

R255 G71 B167

R255 G185 B222

R0 G0 B00

MDA Benefits for the

 Software Lifecycle

 Implementation: MDA enables the integration of new target

software platforms based on the existing design models.

 Integration: Integration is easier since both the implementation

and the design models exists at the time of integration.

 Maintenance: The availability of the design in a machine-readable

form gives developers direct access to the specification of the

system, making maintenance much simpler.

 Testing and simulation: The design models can be validated against

existing requirements and executable models can be used to

simulate the behaviour of the system.

53

R0 G49 B82

R105 G133 B153

R111 G118 B127

R226 G0 B116

R255 G71 B167

R255 G185 B222

R0 G0 B00

Literature

 Booch, G.; Rumbaugh, J.; Jacobson, I. (1999): Das UML-
Benutzerhandbuch. Addison-Wesley

 Hitz et al. (2005): UML@Work: Objektorientierte
Modellierung mit UML 2, d.punkt Verlag

 Johannes Scheier: Software Engineering,
www.jug.ch/events/slides/061018_johannes_scheier.pdf

 OMG (2011):
http://www.omg.org/gettingstarted/specintro.htm#MDA

 Stellmann, A.; Greene, J. (2011): Applied Software
Project Management, O‘Reilly Media Inc

54

http://www.jug.ch/events/slides/061018_johannes_scheier.pdf
http://www.omg.org/gettingstarted/specintro.htm#MDA

