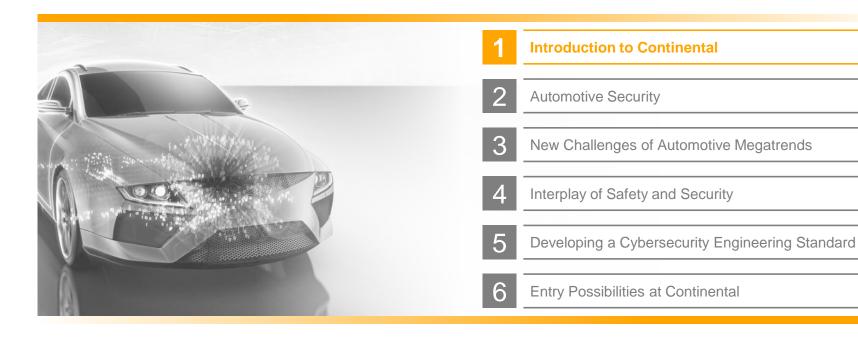
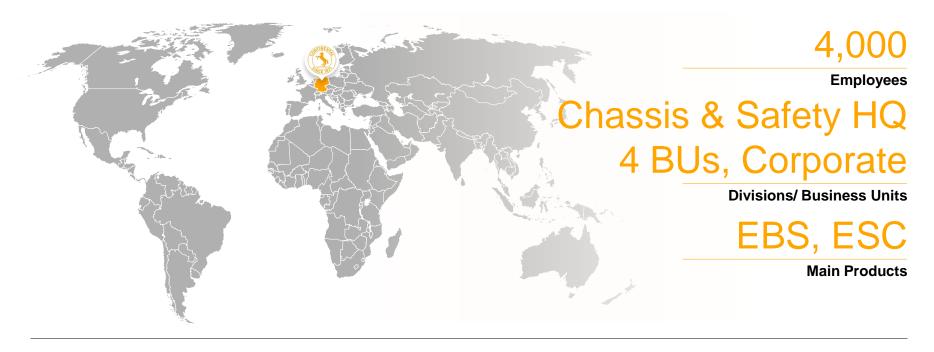


Cybersecurity in the Automotive Domain PWIN Guest Lecture


Dr. Markus Tschersich | January 23rd, 2018 | Goethe University Frankfurt

Cybersecurity in the Automotive Domain


Agenda

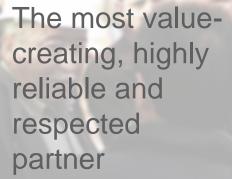
"My" Continental Location

Continental Teves | Frankfurt am Main

Our Vision

Your Mobility. Your Freedom. Our Signature.

Our world is made up of:


Highly developed, intelligent technologies for mobility, transport and processing

We want to provide:

The best solutions for each of our customers in each of our markets

For our stakeholders:

We Shape the Megatrends in the Automotive Industry:

Safety, Environment, Information, Affordable Cars

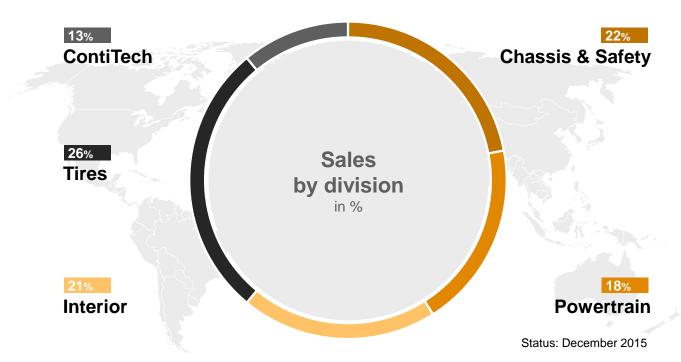
Doing more.
For intelligent driving.

Doing more.
For global
mobility.

Continental Corporation

Over 140 Years of Innovation and Progress

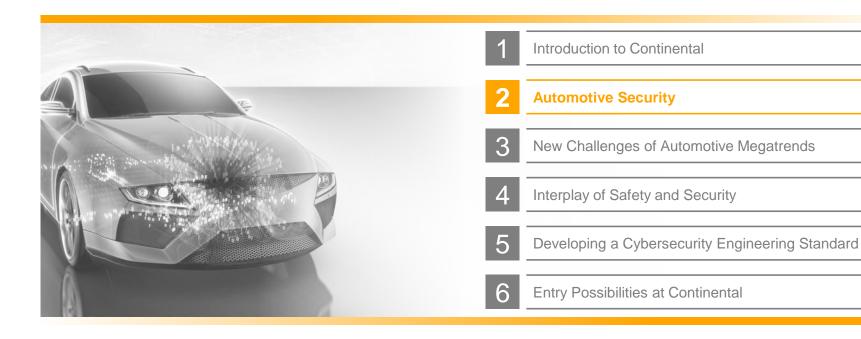
Reduinted level Spitiple is sn


Makagaliskviktleppjanded Overtiralpirtaglistlikentericac-Overtiralpirtaglisentiaalusthje Overtiralpirtaglistlikentiaalusthje Overtiralpirtaglistlikentialustes Overtiralpirtaglistlikentialustes

1871 1900 1930 1960 1990 **2017**

Continental Corporation

Overview 2016



Sales of appr. €40.5 billion

Cybersecurity in the Automotive Domain

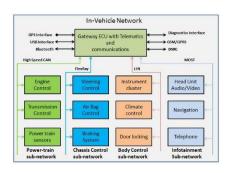
Agenda

Increasing Complexity

Increasing number of ECUs

1997: 5 ECUs in Audi A6

2007: about 50 ECUs in Audi A4


today: about 80 to 100 ECUs

Change in ECU usage

- Traditionally one task per ECU
- New trend of
 - > distributing functions across ECUs
 - Integration multiple functions on one ECU

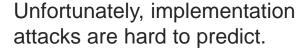
Variety of Applications

- Lane Assistance
- Collision avoidance
- Accident Reporting (eCall)
- Autonomous and Cooperative Driving

ECU: Electronic Control Unit

Understanding Security

security

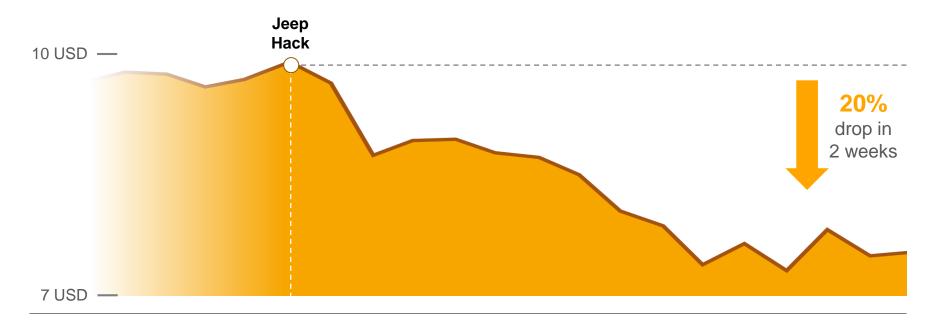

security "gate"

OKAY

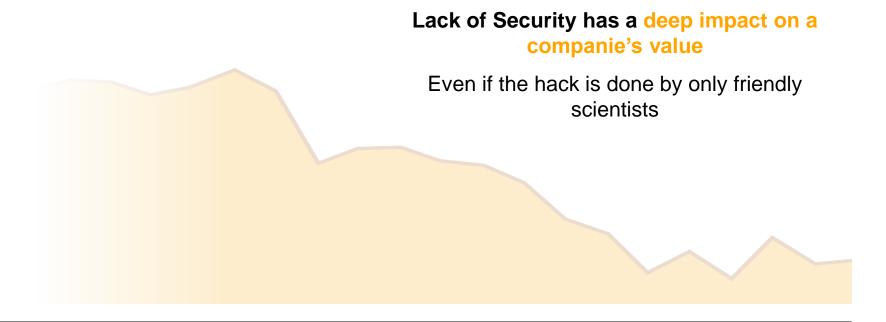
Security

BYPASSED

Consequences from a lack of security



Consequences



Stock Value Fiat Chrysler August 2015

Stock Value Fiat Chrysler August 2015

... and more attacks with increasing press perception

2004: DRIVING; Altering Your Engine With New Chip (NY Times)

2003: Gentlemen, Start Hacking Your Engines (NY Times)

2002: How To Hack Your Car (Forbes)

2010: Security and Privacy Vulnerabilities of In-Car Wireless Networks: A Tire Pressure Monitoring System Case Study (Rutgers, USC)

2010: Experimental Security Analysis of a Modern Automobile (Center for Automotive Embedded Systems Security)

2007: Hackers can take over car navigation system (The Telegraph)

2005: RFID Chips in Car Keys and Gas Pump Pay Tags Carry Security Risks (John Hopkins University)

2005: Linux Bluetooth hackers hijack car audio (The Register)

2005: Hacking the Hybrid Vehicle (Wired)

2016: Nissan Leaf electric cars hack vulnerability disclosed (BBC)

2014: A Survey of Remote Automotive Attack Surfaces (IOActive)

2014: Most Hackable Cars (CNN Money)

2014: How to Hack a Car (Vice)

2014: The Robot Car of Tomorrow May Just Be Programmed to Hit You (Wired)

2013: Digital Carjackers Show Off New Attacks (Forbes)

2013: Jury Finds Toyota Liable in Fatal Wreck in Oklahoma (New York Times)

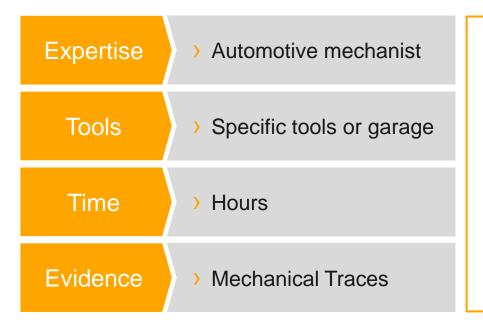
2013: Adventures in Automotive Networks and Control Units (IOActive)

2013: Car Hacking: Your Computer-Controlled Vehicle Could Be Manipulated Remotely (CBS)

2013: How to Hack Your Mini Cooper: Reverse Engineering CAN Messages on Passenger Automobiles (Defcon 21)

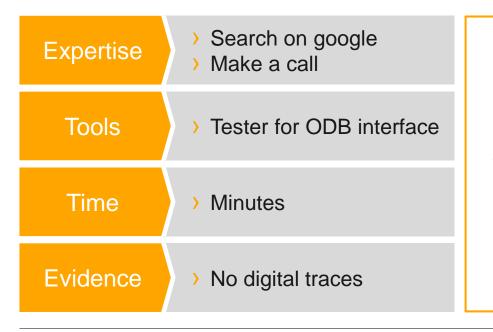
2011: Can Your Car be Hacked? (Car and Driver)

2011: Comprehensive Experimental Analyses of Automotive Attack Surfaces (Center for Automotive Embedded Systems Security)


< 2005

2005-2010

> 2010

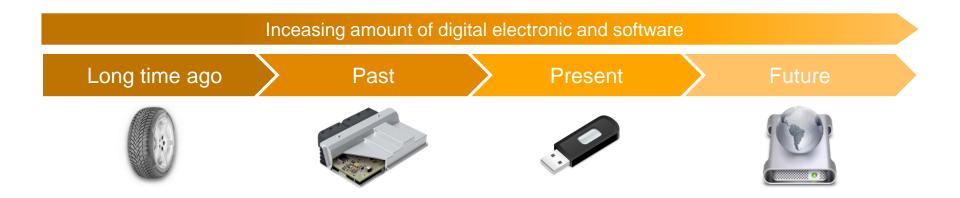

Odometer Example: Good old times

Video: https://www.youtube.com/watch?v=vUh-8GEhzJM

Odometer Example: Nowadays

Video: https://www.youtube.com/watch?v=orMsibfLcFY

Attackers and their Damage Categories

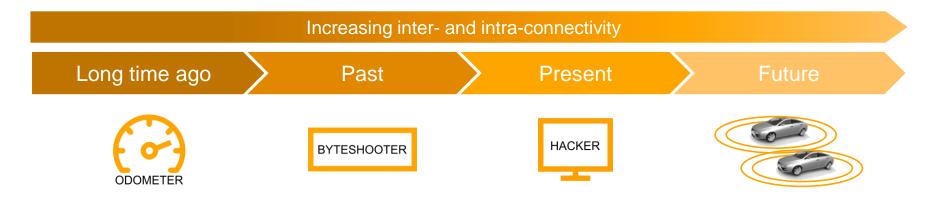

Stealing assets Thieves Stealing vehicles Manipulating vehicle data Owner/Driver Manipulating vehicle Settings Spoofing licences Stealing business secrets OEM/Tier-1 Conducting product piracy Software Elevating privilidges manufacturer Hacker, Virus, Stealing of personal data Malware Manipulating the functional safety

Damage Categories

- Property
-) Image
- > Business Model
- Legislation
-) Know-How
- Reliability
- Functional Safety
- Privacy

Trends on Automotive Products – IT Technology

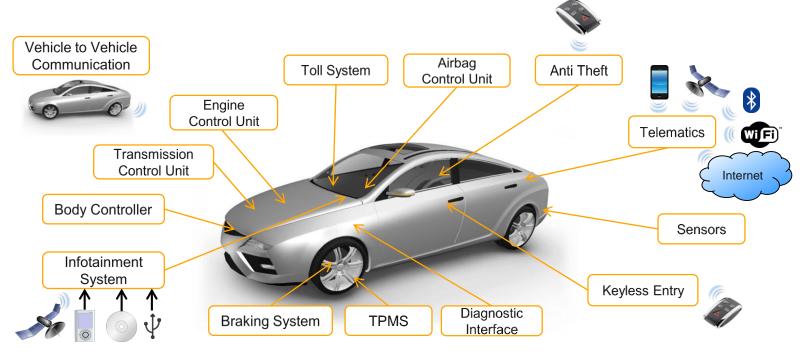
- Simple mechanical vehicles change to intelligent, connected, and software-based IT-Systems
- > Flexibility, compatibility, costs, and weight are driving the change


Trends on Automotive Products – Interconnectivity

Inceasing inter- and intra-connectivity Long time ago Past Present Future

- Evolutionary step from closed system to a complex interconnected and interactive communication party
- The need for an efficient and safe traffic regulation is one driver next to infotainment and internet connectivity.

Trends on Automotive Products – Scaleability of Attacks



- > Attacks are scaling from single manipulations of ECUs to organized network wide attacks
- Driver for this development on various stakeholder (owner, companies, 3rd parties): fun, fame, sabotage

Automotive Security Threats

Increasing attack surface

Cybersecurity in the Automotive Domain

Agenda


- Introduction to Continental
- **Automotive Security**
- **New Challenges of Automotive Megatrends**
- Interplay of Safety and Security
- Developing a Cybersecurity Engineering Standard
- Entry Possibilities at Continental

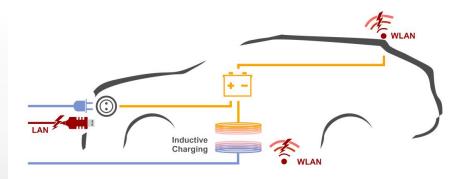
New Challenges of Automotive Megatrends

Increasing Threats and Attack Potential at the Horizon

Electric Mobility

Information

Megatrend: Electric Mobility


Infrastructure Necessary to be Protected

Charging Infrastructure

- Connects Automotive to the critical infrastructure "Electric Power"
- Electromobility is highly depending on the availability of charging infrastructure
- Implications with NIS Directive Regulation on the horizon

Payment

Needs to be secured to avoid financial harm for supplier and/or customer

Megatrend: Electric Mobility

Attacks Based on Loss of Data Integrity

Attack on EV performance

- Different data sources used to extend range (weather, altitude difference, traffic volume)
- Manipulation can lead to unexpected performance of electronic vehicle

Attack on components

- Overheated battery triggered by manipulation of temperature sensor
- Will cause financial harm

Megatrend: Autonomous Driving

SAE J3016 - Driving Automation Definitions

	SAE Level	Name	Steering, Acceleration, Deceleration	Monitoring of Driving Environment	Fallback Performance	System Capability (Driving Modes)
Human driver monitors the driving environment	0	No Automation	Human	Human	Human	n/a
	1	Driver Assistance	Human and System	Human	Human	Some driving modes
	2	Partial Automation	System	Human	Human	Some driving modes
Automated driving system monitors the driving environment	3	Conditional Automation	System	System	Human	Some driving modes
	4	High Automation	System	System	System	Some driving modes
	5	Full Automation	System	System	System	All driving modes

Megatrend: Autonomous Driving

Automated Driving System takes over more responsibility

- Impact of errors/attacks increases due to higher range of functions
- Simple shut-down in case of attacks is not working
- Need for redundancy and fallback systems
- Higher impact on privacy due to increased need of data collection and processing

Megatrend: Information

New Opportunities and Risks of Big Data

Collection, processing and connectivity

- Improve driver assistant systems (Safety)
- More attractive/interactive infotainment systems
- Reduction of fuel/energy consumption
- Mobility Services, Smart Cities, Smart Home

Arising Risks of Big Data

- Increasing number of attack vectors
- Compliance with different legal privacy frameworks
- Higher attraction to data theft

Megatrend: Information

Over the Air is Enabler and Additional Risk

Opportunities

- Smart and fast way for bug fixing and security patches
- > Enables automotive app ecosystem
- Provides live information

Attack Vectors

- Connection interface can be attacked
- Risk of infected automotive apps

Cybersecurity in the Automotive Domain

Agenda

- 1 Introduction to Continental
- 2 Automotive Security
- 3 New Challenges of Automotive Megatrends
- 4. Interplay of Safety and Security
- 5 Developing a Cybersecurity Engineering Standard
- 6 Entry Possibilities at Continental

Ensuring Device Reliability

Interplay of Functional Safety and Security Required

- Safety a discipline with a long history in automotive
- Functional Safety and Security need to engage with each other to ensure high quality products
- Both disciplines need to be considered by the organization.

Differentiate Safety and Security

Function: Intended functional behavior

Functional Safety

Is there any risk resulting out of a faulty functional behavior?

Covered in Standard: ISO 26262

Safety in use / Safety of the intended functionality

Is there any risk resulting out of the fault free functional behavior?

Actually not standardized, in discussion for ISO 26262 2nd ed./SOTIF

Sensor HW part fault leads to wrong decision

Sensor
algorithm
takes wrong
decision out of
environment

PWIN Guest Lecture

Public

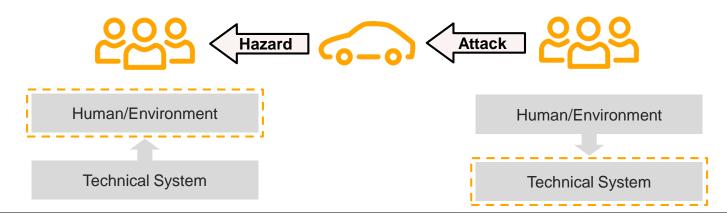
Sensor algorithm takes wrong decision due to "jail break" SW

Cybersecurity

Is there any risk resulting out of a faulty functional behavior?

Annex in ISO 26262:2018 Sep. Standard: ISO-SAE 21434

Differentiate Safety and Security


Security vs. Functional Safety

Functional Safety

Protect human against threats proceeded from (known) technical systems.

Security (IT/Cyber)

Protect a technical system against attacks (basically unknown) as well as disturbances from the environment or caused by human.

Differentiate Safety and Security

Similarities between Safety and Security

Risk oriented approach

What can go wrong? How likely is it? What will the consequences be? (note: differences in probability estimations)

Development process

 Safe and secure software is achieved by using a systematic development approach rather than reactive patching

Testing

Comprehensive testing is essential for confidence in the final product

Redundancy

Double instances of safety/security mechanisms does not necessarily lead to double safety/security

Ultimate objective

Achieving a sufficiently safe/secure product

Culture and values

 Knowledgeable, motivated and committed management and employees is a success factor for achieving safe and secure products

Differentiate Safety and Security

Differences between Safety and Security

Classification of consequences

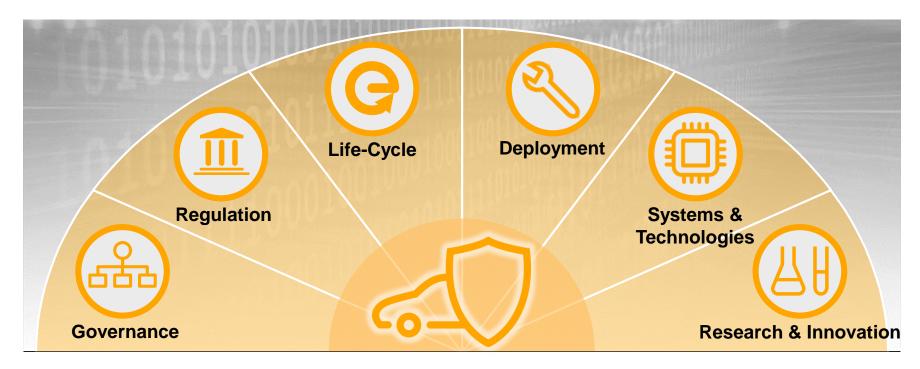
- In safety typically divided into several levels (e.g. SIL/ASIL/DAL)
- In security quite binary, system is either compromised or not

Threat analysis, risk assessment

- In safety we have pretty well known, static fault models and fault assumptions
- In security threats changes regarding motivation, knowledge and attack vectors

Non-experts understanding

- > In safety the consequences are easily understandable
- In security the threat models are often met with scepticism and might be judged as paranoid


Knowledge of experience

- In the safety domain there is a culture of discussion and sharing of experience
- In security, business actors tend to keep their experiences to themselves, thus efficiently slowing down the collective expertise

Address Challenges of Security in Automotive

Parts of the Holistic Approach

PWIN Guest Lecture

Public

Part: Governance

Preparation of the Organisation Necessary

Management

- Security Strategy
 Consideration by Management for the overall strategy
- Processes
 Revise processes with security respective activities and work products
- Standardisation
 Harmonization of internal and external activities
- Compliance and Audits
 Ensure correct implementation of security measures over time

Culture

- Awareness of Management and Engineers
 Inform about security threats and their impact
- Trainings, Competence
 Management
 Ensure technical skills to address security threats appropriately
- Security Engineering Consider security in the design
- Lessons Learned
 Consider known threats and effective countermeasures

Sustainability

- Surveillance and Cyber-Defence
 Awareness about new threats appearing in the field
- Incident Management Effective and lean processes to mitigate security incident short-term
- Xnowledge Management Documentation of effective solutions

Approach: Regulation

Not Exhaustive List of Regulations | 1

International

UNECE WP.29 TF Cybersecurity and OTA issues

Europe

- Joint Communication on "Resilience, Deterrence and Defence: Building strong cybersecurity for the EU" (JOIN (2017) 450
- Product-specific Certification, e.g. Tachograph, Event Data Recorder (AD), C-ITS
- General Data Protection Regulation
- NIS Directive (might be relevant in future)

Approach: Regulation

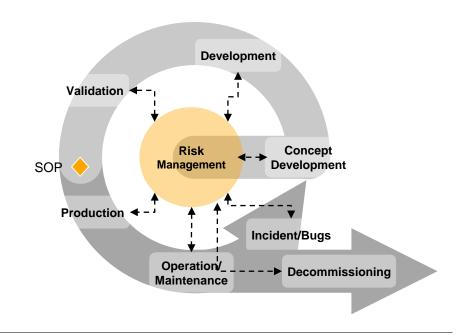
Not Exhaustive List of Regulations | 2

China

- > Cybersecurty Law (中华人民共和国网络安全法)
- > Cryptographic Law Draft (中华人民共和国密码法)

USA

Self-Driving Car Act



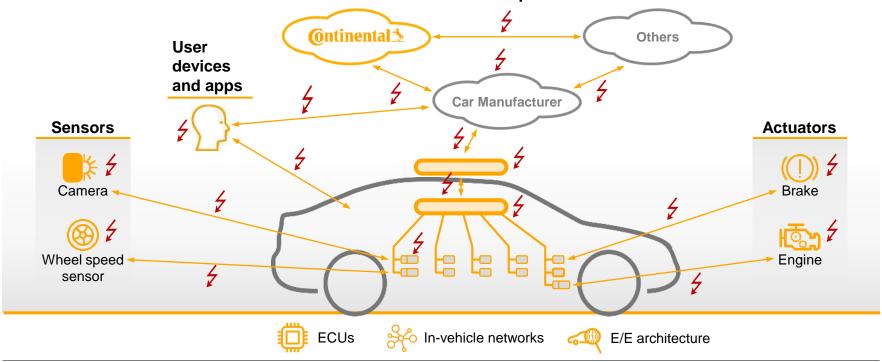
Part: Life-Cycle

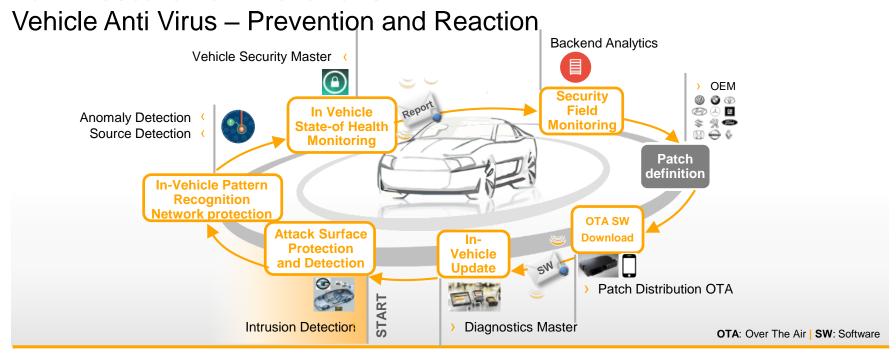
Consider Cybersecurity from Cradle to Grave

- Low impact by Cybersecurity
- Shall be stable within organisations
- Product independent within organization
- Slight tailoring for specific products
- Clear interfaces due to harmonization in distributed development

Part: Deployment

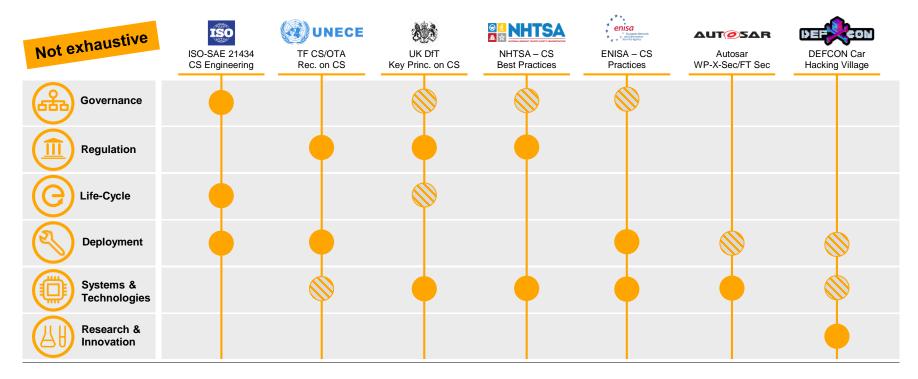
Establish Cybersecurity on the Operational Level


- Medium impact by Cybersecurity
- Defined methodologies for transparent and comprehensible decisions, e.g.
 - Risk Management
 - Security Testing
- Supply Chain ManagementClear assignment of responsibilitiesEngineering Interface Agreement
- **Dedicated Security Services**
 - Online Trust Čenter
- Configuration & Vulnerability Management


Part: Systems & Technologies

Secure Data, Secure Network, Secure Components

Part: Research & Innovations



Cyber Security needs to be continuously observed and if needed be patched

Challenges of Security in Automotive

Different Activities needs to be Considered

Cybersecurity in the Automotive Domain

Agenda

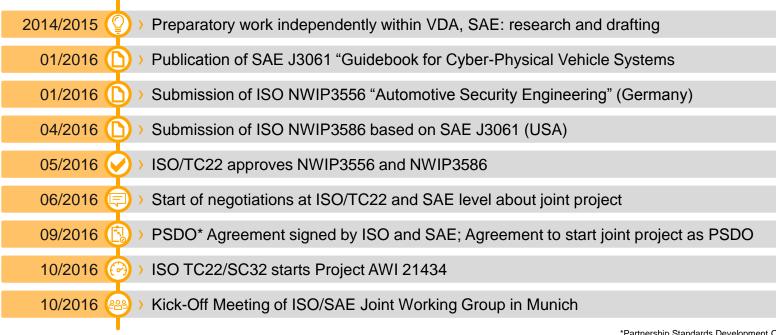
- 1 Introduction to Continental
- 2 Automotive Security
- 3 New Challenges of Automotive Megatrends
- 4 Interplay of Safety and Security
- 5 Developing a Cybersecurity Engineering Standard
- 6 Entry Possibilities at Continental

Standardizing Cybersecurity Engineering

Goals of the Initiative

The future standard shall...

- Give uniform definition of notions relevant to automotive security
- Specify minimum requirements on security engineering process and activities and define wherever possible criteria for assessment
- Describe the state of the art of security engineering in automotive E/E development


Targeted effects on automotive industry

- Common and internationally agreed understanding of automotive cybersecurity engineering
- Sufficient rigor as reference for legislative institutions; ensure legal certainty

Road Vehicles – Cybersecurity Engineering

Towards a joint ISO/SAE Standardization Project

*Partnership Standards Development Organizations

Standardizing Cybersecurity Engineering

ISO/SAE 21434 – Overview

Joint Working Group

Working Groups within ISO

- > ISO/TC22/SC32/WG11 Cybersecurity
- JWG for ISO/SAE Cybersecurity Engineering

Co-Convenors

- > SAE: Lisa Boran (Ford, US)
- > ISO: Gido Scharfenberger-Fabian (carmeq/VW, DE)

Expert Groups

12 national delegations are involved

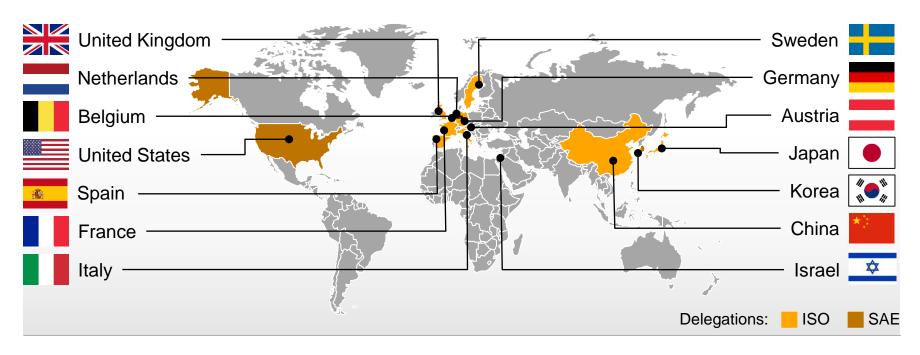
Document

Standard

- ID: ISO/SAE 21434
- Title: Road vehicles Cybersecurity Engineering

Scope

- > Requirements for cybersecurity risk management
- process framework
- Common language
- Road vehicles (pre-defined by TC22)


Expected Publication Date

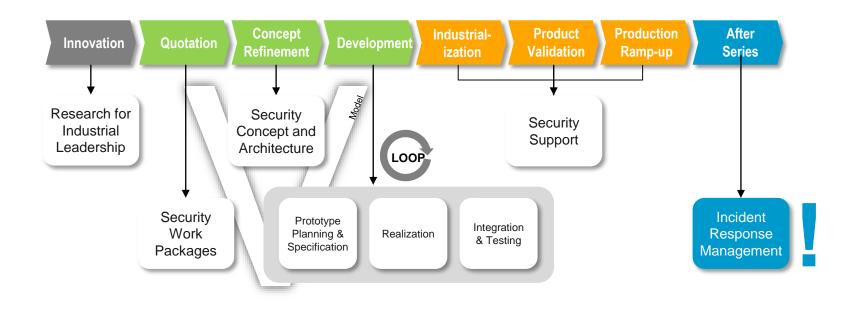
> Begin of 2020

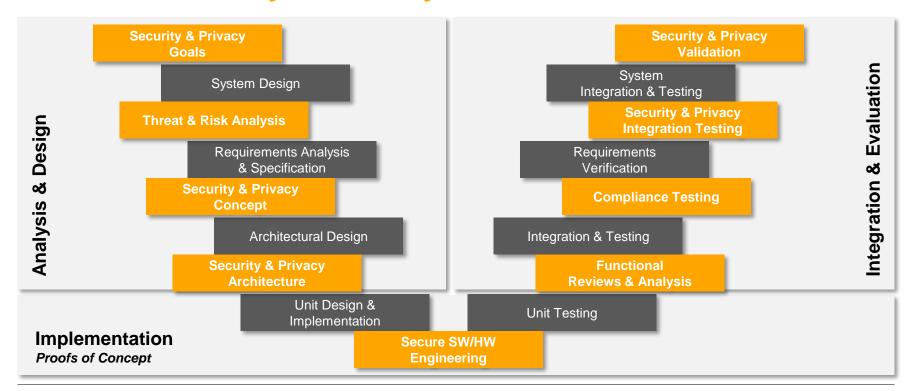
Road Vehicles – Cybersecurity Engineering

National Delegations

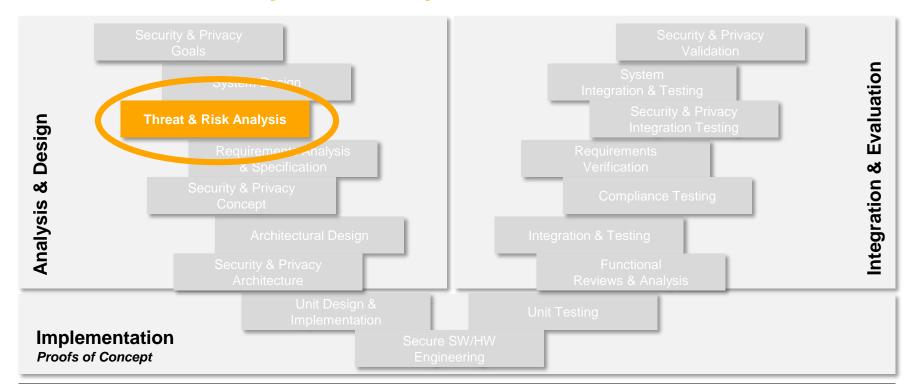
Road Vehicles – Cybersecurity Engineering

Involved Organizations

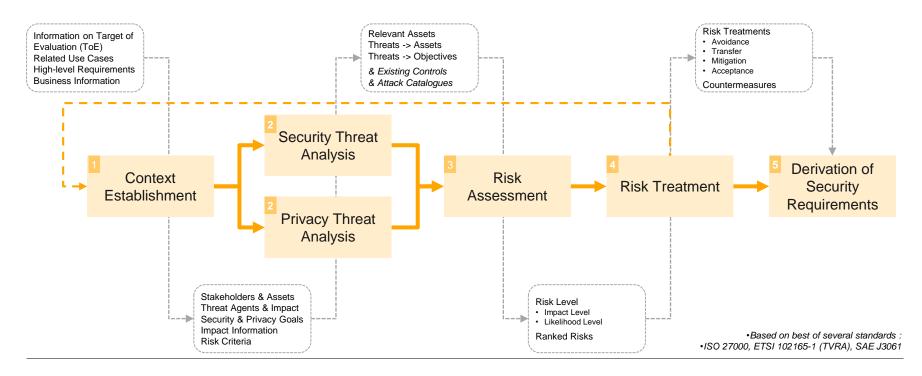



Standardizing Cybersecurity Engineering

Security in the whole Product Life Cycle



V-Model: Security & Privacy



V-Model: Security & Privacy

Threat Analysis and Risk Assessment (TARA*)

Cybersecurity in the Automotive Domain

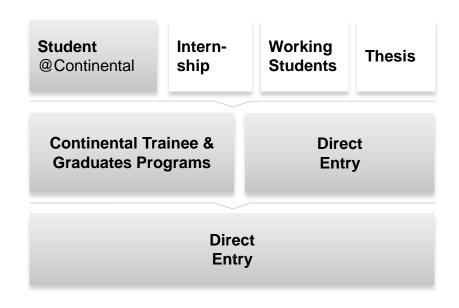
Agenda

- 1 Introduction to Continental
- 2 Automotive Security
- 3 New Challenges of Automotive Megatrends
- 4 Interplay of Safety and Security
- 5 Developing a Cybersecurity Engineering Standard
- 6 Entry Possibilities at Continental

Entry Possibilities at Continental

This is Continental


- Truly international team around the globe
- Performance-oriented working atmosphere
- Early responsibility and exciting job challenges
- Achieving exceptional results through passion
- Open & informal culture: open doors & open minds
- Innovative Technology
- Significant contribution to sustainable mobility



Entry Possibilities at Continental

From Internship to Permanent Position

Possible entries at Continental AG

Entry Possibilities at Continental Internship and Thesis

Requirements:

- > Apply 2 to 3 months before your preferred internship start date
- > Duration: 3-6 months
- Current certificate of matriculation
- Very good language skills in English
- Proficient experience in working with MS Office (esp. Word, Excel, Power Point)

Take your chance!

Apply online:

Have we sparked your interest?

Then spark ours!

www.careers-continental.com

www.facebook.com/ ContinentalCareer

www.continental-people.com

Have we sparked your interest?

Then spark ours!

www.co-pace.com

Corporate Systems & Technology

Contact Details

Specialist Security & Privacy

Dr. Markus Tschersich

Continental Teves AG & Co. oHG Cross Divisional Systems Security & Privacy Competence Center Guerickestraße 7 60488 Frankfurt am Main, Germany

Phone: +49 69 7603-1832

eMail: markus.tschersich@continental-corporation.com

