JOHANN WOLFGANG

UNIVERSITÄT FRANKFURT AM MAIN

Fachbereich Wirtschaftswissenschaften Institut für Wirtschaftsinformatik Lehrstuhl für M-Business & Multilateral Security

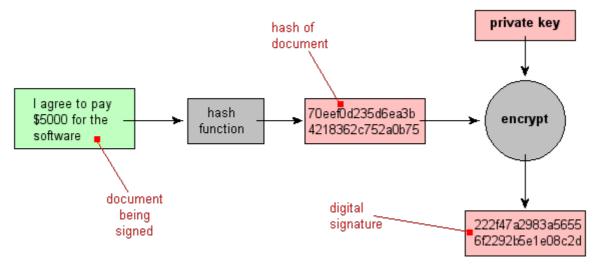
Information and Communications Security WS 16/17 Assignment 4 Cryptography II

Fachbereich Wirtschaftswissenschaften

Institut für Wirtschaftsinformatik Lehrstuhl für M-Business & Multilateral Security www.m-chair.de

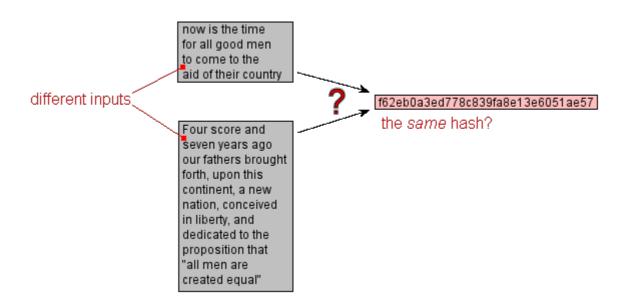
Prof. Dr. Kai Rannenberg Ahmed S. Yesuf, MSc.

Telefon	+49 (0)69-798 34706
Telefax	+49 (0)69-798 35004
E-Mail	sec@m-chair.de


Study the following questions and prepare your answers before the 14th of December 2016.

Exercise 1: (PGP)

Install PGP Email Desktop (trial version) or a similar software for mail encryption on your system. Create a <u>new</u> key pair, and send a signed and encrypted message to ahmed.yesuf@m-chair.de containing your newly created <u>public</u> key and a short summary of your experiences. PGP can be downloaded from <u>http://www.symantec.com/business/desktop-email.</u>


Exercise 2: (Hash functions and signature systems)

The image below shows the steps of digitally signing a document. The sender receives the plain document and the digital signature.

Hash functions always produce a fixed size value, no matter how big the plain text is. For example, MD5 produces 128 bits. But if it is possible to represent every possible stream of data in 128 bits (16 bytes), then it seems obvious that there are many input streams that can produce the same hash value. When two inputs produce the same hash value, this is called collision (see Figure below).

Given a fixed message m1, if we cannot find in a practical way a different message m2 such that hash(m2) = hash(m1), then we say that this hash function is collision-resistant.

- a) In the digital signature scheme, why do we produce the signature on the hash of the document and not on the document directly?
- b) Why is it important that hash functions are collision-resistant?

Exercise 3:

- a) What is the difference between public key encryption and digital signature?
- b) Why is certification of public keys necessary? Name an attack that is possible if keys are not certified.