

Lecture 12

Evaluation of Mobile Application & Service Designs

Mobile Business II (SS 2023) Prof. Dr. Kai Rannenberg

Chair of Mobile Business & Multilateral Security Goethe University Frankfurt a. M.

Agenda

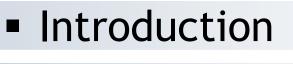
- Introduction
- Case Studies
- Dynamic Analyses
- Controlled Experiments
- Simulations
- Summary & Conclusion

mobile Introduction to Design Evaluation

- Evaluation of application and service designs is difficult since such evaluations address objects that currently exist as concepts or prototypical implementations only.
- Therefore, design evaluations represent *ex ante* evaluations of IT investments into corresponding technologies. [MuntermanJanssen2005]
- Consequently, design evaluation addresses the *potential value* of IT design deployments. [DavernKauffman2000]

mobile Introduction to Design Evaluation

- The selection of appropriate evaluation methods needs to be matched with the application or service design.
- For example, descriptive evaluation methods are appropriate for especially innovative designs for which other (e.g. quantitative) evaluation approaches may not be feasible.
- The goodness and efficacy of designs can be rigorously demonstrated via well-selected evaluation methods.



Design Evaluation Methods

Observational	Case study	Studies artifact in depth in business environment		
	Field study	Monitors use of artifact in multiple projects		
Analytical	Static analysis	Examines structure of artifact for static qualities (e.g. complexity)		
	Architecture analysis	Studies how artifact fits into technical IS architecture		
	Optimization	Demonstrates inherent optimal properties of artifact or provides optimality bounds on artifact behavior		
	Dynamic analysis	Studies artifact in use for dynamic qualities (e.g. performance)		
Experimental	Controlled experiment	Studies artifact in controlled environment for properties (e.g. usability)		
	Simulation	Executes artifact with artificial or historical data		
Testing	Functional (black box) testing	Executes artifact interfaces to discover failures and identify defects		
	Structural (white box) testing	Performs coverage testing of some metric (e.g. execution paths) in the artifact implementation		
Descriptive	Informed argument	Uses information from the knowledge base (e.g. relevant research) to build a convincing argument for the artifact's utility		
	Scenarios	Scenarios: Construct detailed scenarios around the artifact to demonstrate its utility		

Agenda

Case Studies

mobile business

- Dynamic Analyses
- Controlled Experiments
- Simulations
- Summary & Conclusion

mobile business

Example 1: An Integrated RFID-based **Mobile Logistics System Design**

- The <u>Container Depot Management</u> Support System (CDMSS) is designed to support a container depot using RFID and mobile communication technologies.
- Containers are automatically identified by the stackers via RFID tags, and stackers continuously communicate with the CDMSS via WLAN.
- Real-time visibility of container positions enables operators to process containers more quickly and efficiently.

Wireless I AN Basestation

Container Depot Management Support System

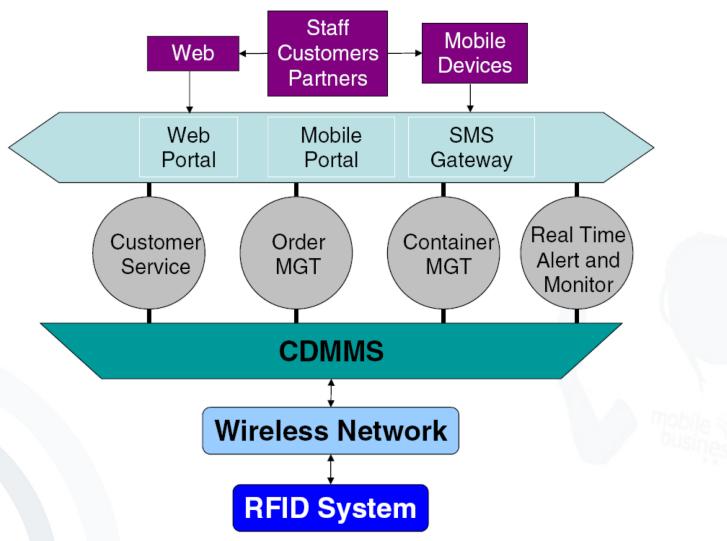
Stacker equipped with WLAN access & RFID readers

Evaluation Approach Case Study 1

The integrated RFID-based system design is evaluated by conducting a case study.

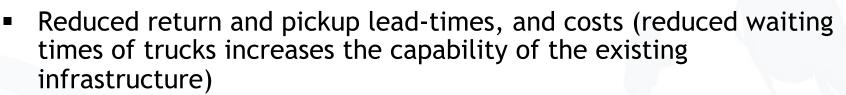
Observational	Case study	Studies artifact in depth in business environment		
	Field study	Monitors use of artifact in multiple projects		

- A case study is "an empirical enquiry that investigates a contemporary phenomenon within its real-life context, especially when the boundaries between phenomenon and context are not clearly evident". [Yin 2003]
- As case study company a container depot located in Hong Kong was chosen (Container System Ltd. with a size of 21,000 m²).
- This company operates a traditional computer information system, which does not support mobile communication technologies so far.
 [Ngai et al. 2007]


Evaluation Approach Case Study |2

With the current system infrastructure, the container depot is facing several problems:

- Limitations of Walkie-Talkie communication system used
- Container misplacement
- Ownership of containers not clear
- Dependence on experienced staff
- Inefficiency in the search for containers
- Can the RFID-based system design solve these problems?


System Architecture

Benefits Identified by Case Study

- Increased container utilization (due to automated management and localization of containers)
- Increased operational efficiency (technology-controlled support of previously labor-intensive processes)
- Better quality control and customer services (e.g. enhanced data analyses, real-time tracking and alerting services)

 Improved service quality and profitability (real-time status reports available, frequently and less frequently used container types, i.e. infrastructural bottle-necks can be identified)

www.container-sys.com

mobile business

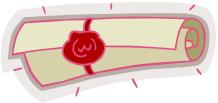
Challenges identified by Case Study

- Material issues: metal containers can reflect radio waves.
- Electromagnetic interferences: Multiple sources of electromagnetic interference
- Business process issues: Implementing an RFID-based system can demand for fundamental redesign of business processes.
- Security issues: RFID usage could cause omnipresent surveillance

Applet Vi pplet	ewer: cdsms.CDSMS
4	
Contai	iner Information
Owner :	Transward Container Ltd
Status :	Repaired
Data in:	12-07-2004
Data Out:	14-07-2004
Contai	iner Target Position
× 3	Y Z 2 3
Car Cu	urrent Position
	х ү 2 2
	OK
olet starled.	

Agenda

- Introduction
- Case Studies
- Dynamic Analyses
- Controlled Experiments
- Simulations
- Summary & Conclusion

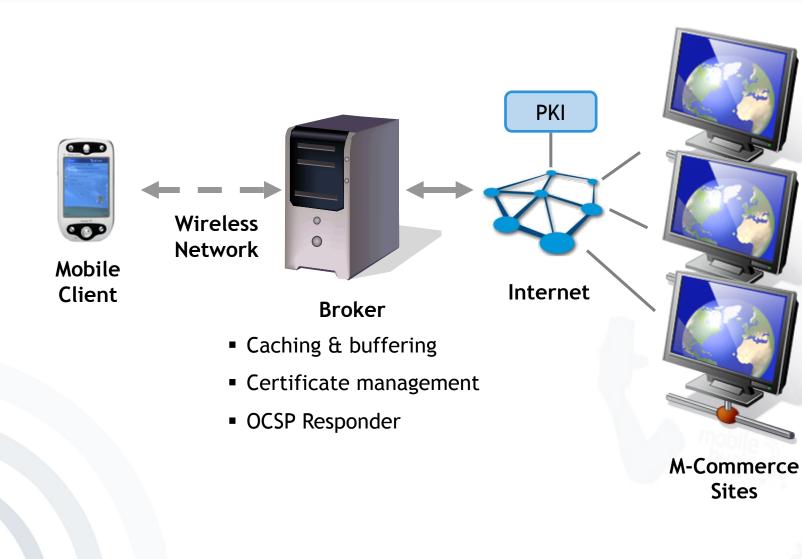


mobile business

Example 2: Secure M-Commerce Transactions

- For conducting secure mobile transactions, an end-to-end authenticated and private channel is required.
- Corresponding protocols (e.g. HTTPS) are based on Identity Certificates, whose validity needs to be checked.

- "The Online Certificate Status Protocol (OCSP) enables applications to determine the (revocation) state of an identified certificate." [Myers et a. 1999]
- "OCSP client issues a status request to an OCSP responder and suspends acceptance of the certificate in question until the responder provides a response." [Myers et al. 1999]



An Infrastructure Design for Certificate Validation in M-Commerce Transactions

- Online certificate-proofs using OCSP consume much processing capacity and bandwidth, both being limited resources in mobile communication scenarios.
- H-OCSP is a modified OCSP protocol concept addressing these issues.
- The idea behind H-OCSP is that validation functions could be delegated to a broker in order to reduce resource utilization in the client.
- Furthermore, mobile clients can benefit from H-OCSP by storing responses of frequently used certificates in their cache.

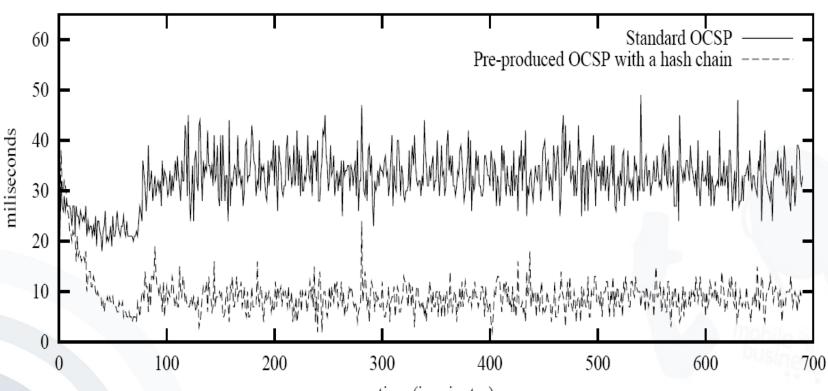
mobile business

System Architecture

Evaluation Approach Dynamic Analysis

 The developed H-OCSP protocol is evaluated by conducting a dynamic analysis addressing the two identified bottlenecks of the traditional OCSP protocol (processing capacity utilization and bandwidth consumption)

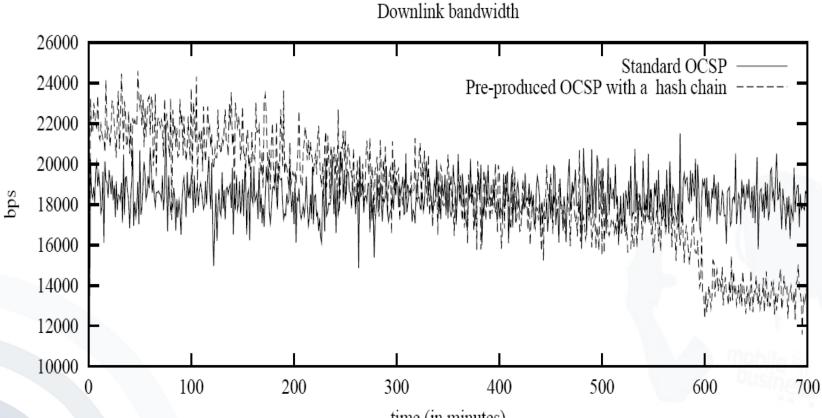
Analytical	Static analysis	Examines structure of artifact for static qualities (e.g. complexity)				
	Architecture analysis	Studies how artifact fits into technical IS architecture				
	Optimization	Demonstrates inherent optimal properties of artifact or provides optimality bounds on artifact behavior				
	Dynamic analysis	Studies artifact in use for dynamic properties (e.g. performance)				


 By comparing the performance of standard OCSP with H-OCSP in terms of the bottlenecks identified, the newly developed protocol concept can be evaluated.

Dynamic Analysis Performance Measurement I

Processing capacity consumption

Processing capacity consumption



time (in minutes)

Dynamic Analysis Performance Measurement II

Down-link bandwidth comparison

time (in minutes)

Conclusion

- The Dynamic Analysis provides insights into performance issues by comparing capabilities of existing approaches with new designs.
- After a short period of time (around 70 minutes) the newly designed H-OCSP protocol consumes approx. five times less computational load at the responder compared to the original OCSP protocol.
- The down-link bandwidth utilization is decreasing significantly when the client's cache is fully working and the more frequently asked certificates are requested.

Agenda

mobile business

- Case Studies
- Dynamic Analyses
- Controlled Experiments
- Simulations
- Summary & Conclusion

mobile business

Example 3: *iTriage* - A Prototypical eHealth Application Design

- *iTriage* is a prototypical eHealth application design that assists nurses to determine the level of urgency of medical attention and decisions (=triage).
- The nurses are guided during their decision-making by *iTrage*.
- They select categories that best classify the patient's need for medical attention.

à.	pprice	-	
	- 0		T
🎢 Tria	ge	√ € 12:1	2
Enter Pa	tient Name	5/3/2	2004
Airway	CF	: <u>P</u>	· · ·
Breathin	Ig CF		
FabPage1	TabPage2 Tab	Page3 Tabi	Page4
Catego CF (9		Reset	Gave
		L	ogoff
			⊠ ^
Connected			

Evaluation Approach Controlled Experiment

 The *iTriage* application design was explored by conducting a laboratory study (experiment within a controlled environment).

Experimental	Controlled experiment	Studies artifact in controlled environment for qualities (e.g. usability)
	Simulation	Executes artifact with artificial or historical data

- An evaluation framework was developed in order to assess the "decision impact" of the application design.
- The "decision impact" can be evaluated by comparing decision results of two different groups (nurses that were using *iTriage* (PDA Group) and a second group which doesn't (Paper Group)).
- Controlled experiment

One Evaluation Criteria

 The mean accuracy of triage outcomes were then compared for the two user groups (PDA group vs. paper group).

	PDA Group	Paper Group
Mean accuracy of triage outcomes		
	67 %	53%
	Source	e. [Padmanabhan et al. 200

Further Evaluations

Qualitative user feedback can provide further information how to enhance an application design, such as:

- Application features participants liked best
- Application features participants disliked most
- Missing application features participants wanted most

Conclusion

Controlled experiments can provide valuable information and knowledge to the management, users, and system designers, such as:

- Investigation of potential risks involved
- Understanding of the application usage and the range of applicability
- Training of system users
- Evaluation of necessary change requirements

Agenda

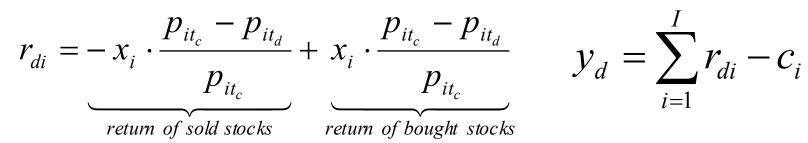
- Introduction
- Case Studies
- Dynamic Analyses
- Controlled Experiments
- Simulations
- Summary & Conclusion

mobile business

Example 4: *MoFiNS* - A Prototypical eFinance Application Design

- MoFiNS is a prototypical mobile <u>financial notification system</u>.
- The prototypical system design identifies relevant market events and proactively notifies investors via a mobile push message.
- Investors are enabled to react promptly to critical market events.

Evaluation Approach Customers' Value Simulation


 The evaluation of *MoFINS* is based on a simulation of the value provided to customers using the system.

Experimental	Controlled experiment	Studies artifact in controlled environment for qualities (e.g. usability)
	Simulation	Executes artifact with artificial or historical data

 This value is measured via defined metrics which define the potential trading profits that can be realized by investors due to a decreased reaction time.

mobile business

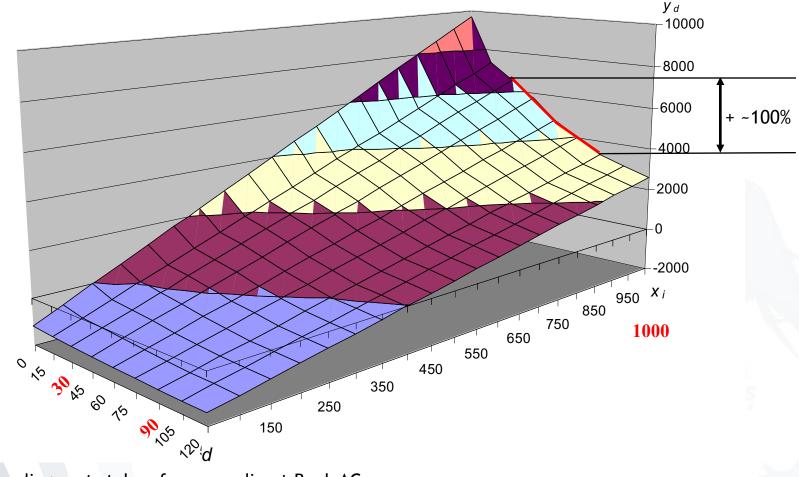
Evaluation Criteria Definition

with
$$d = \{0, 15, 30, 45, 60, 90, 120\}$$

- r_{di} = realizable return with index *i* and *d*
- y_d = realizable yield with index *d*
- x_i = trading volume (in \in) index *i*
- p_{it_c} = closing price of stock with index *i*
- p_{it_d} = first available price of stock *i*, *d* minutes following the event date
- c_i = costs for trading of stocks with index i
- d = reaction delay of the investor
- *i* = index of affected stock

- Using a number of historical events (n=265) and stock price reactions observed, a simulation approach can assess potential trading profits that can be realized due to a decreased reaction time d.
- y_d is calculated for all events, for different trading volumes, and for different reaction delay levels $d = \{0,15,30,45,60,90,120\}$ minutes.

Simulation Results


	Simu	lated Realizabl	e Yields in € fo	r <i>d</i> ={0, 15, 30,	45, 60, 90, 120}	and $x_i = \{50, 10\}$	0,, 1000} per	Year
	<i>d</i> [min]	d [min] 0	15	30	45	60	90	120
<i>x_i</i> [€] 50	-1177.87	-1297.17	-1336.25	-1376.90	-1425.99	-1497.46	-1532.94
	100	-606.73	-845.35	-923.49	-1004.79	-1102.98	-1245.91	-1316.88
	150	-35.60	-393.52	-510.74	-632.69	-779.96	-994.37	-1100.83
	200	535.53	58.30	-97.98	-260.59	-456.95	-742.83	-884.77
	250	1106.66	510.13	314.77	111.51	-133.94	-491.29	-668.71
	300	1677.80	961.95	727.52	483.62	189.07	-239.74	-452.65
	350	2248.93	1413.78	1140.28	855.72	512.09	11.80	-236.60
	400	2820.06	1865.60	1553.03	1227.82	835.10	263.34	-20.54
	450	3391.19	2317.43	1965.79	1599.92	1158.11	514.89	195.52
5	500	3962.33	2769.25	2378.54	1972.03	1481.12	766.43	411.58
	550	4533.46	3221.08	2791.29	2344.13	1804.14	1017.97	627.63
	600	5104.59	3672.90	3204.05	2716.23	2127.15	1269.51	843.69
	650	5675.72	4124.73	3616.80	3088.33	2450.16	1521.06	1059.75
	700	6246.86	4576.55	4029.56	3460.44	2773.17	1772.60	1275.81
	750	6817.99	5028.38	4442.31	3832.54	3096.19	2024.14	1491.86
	800	7389.12	5480.20	4855.06	4204.64	3419.20	2275.69	1707.92
	850	7960.25	5932.03	5267.82	4576.74	3742.21	2527.23	1923.98
	900	8531.39	6383.85	5680.57	4948.85	4065.22	2778.77	2140.04
	950	9102.52	6835.68	6093.32	5320.95	4388.24	3030.31	2356.09
	1000	9673.65	7287.50	6506.08	5693.05	4711.25	3281.86	2572.15

mobile business

32

Simulation Results (Graphical Illustration)

Realizable Yields for $d = \{0, 15, ..., 120\}$ and $x_i = \{50, 100, ..., 1000\}^*$

* trading costs taken from comdirect Bank AG

mobile business

Conclusion

- Simulation-based experimental evaluations can simulate the impact of the application usage on customer benefits.
- Appropriate evaluation metrics need to be defined.
- Historical or artificial data is needed for running a simulation.
- As the evaluation approach addresses services that are not available yet, this ex-ante evaluation addresses the potential value of a corresponding IT investment.

Agenda

- Introduction
- Case Studies
- Dynamic Analyses
- Controlled Experiments
- Simulations
- Summary & Conclusion

Summary & Conclusion

- Different application or service designs demand for a selection of appropriate evaluation methods.
- Appropriate evaluation criteria need to be identified.
- Most evaluations are based on pre-defined evaluation metrics.
- The selection of evaluation criteria and metrics depends on datasets available or observable.

mobile business

References

[DavernKauffman2000] Davern, M.J., and Kauffman, R.J. Discovering Potential and Realizing Value from Information Technology Investments. Journal of Management Information Systems (16:4), pp. 121-143, 2000. [Hevner et al. 2004] Hevner, A.R., March, S.T., and Park, J. Design Science in Information Systems Research. MIS Quarterly (28:1), pp. 75-105, 2004.

[Muñoz et al. 2003] Muñoz, J.L., Forne, J., Esparza, O. and Soriano, M. Using OCSP to secure certificate-using transactions in m-commerce. Proceedings of the First International Conference on Applied Cryptography and Network Security, LNCS 2846, Kunming, China, 2003.

[Muntermann2005] Muntermann, J. Automated Mobile Alerting Services - Towards a Level Playing Field in the Financial Community. Journal of Electronic Commerce Research (6:3), pp. 241-250, 2005.

[MuntermannJanssen2005] Muntermann, J. and Janssen, L. Assessing Customers' Value of Mobile Financial Information Services: Empirical-Based Measures. ICIS 2005 Proceedings of the 26th International Conference, Las Vegas, NV, USA, pp. 617-628, 2005.

[Myers et al. 1999] Myers, M., Ankney, R., Malpani, A., Galperin, S., and Adams, C. X.509 Internet Public Key Infrastructure Online Certificate Status Protocol - OCSP, RFC 2560. 1999.

[Ngai et al. 2007] Ngai, E.W.T., Cheng, T.C.E., Au, S., and Lai, K. Mobile Commerce Integrated with RFID Technology in a Container depot. Decision Support Systems (43:1), pp. 62-76, 2007.

[Padmanbhan et al. 2006] Padmanabhan, N., Burstein, F., Churilov, L., Wassertheil, J., Hornblower, B., and Parker, N. *A Mobile Emergency Triage Decision Support System Evaluation*. Proceedings of the 36th Annual Hawaii International Conference on System Sciences, Computer Society Press, Los Alamitos, CA, USA, 2006.

[Yin2003] Yin, R.K. Case Study Research: Design and Methods. Sage Publications, 2003.