

UNIVERSITÄT FRANKFURT AM MAIN

Fachbereich Wirtschaftswissenschaften Institut für Wirtschaftsinformatik Lehrstuhl für M-Business & Multilateral Security

Fachbereich

Institut für Wirtschaftsinformatik Chair of Mobile Business & Multilateral Security www.m-chair.de

Sascha Löbner, M.Sc.

E-Mail security@m-chair.de

Information and Communications Security SS 2022 Assignment 3 – Bonus Material *Cryptography*

In the following you will find some bonus material to the second exercise including Modular Exponentiation and Fermat's factorization.

Modular Exponentiation

The fast exponentiation algorithm is based on the assumption that for

 $x^a \mod n = (((x^2 \mod n)^2 \mod n)^2 \dots)^2 \mod n, \quad \text{with } a = 2^k (a \text{ power of } 2)$ squaring is iterated k times. For example, $x^{(2^{2048})}$ can be computed in 2048 modular squaring operations (Knospe 2019, p. 67).

For exponents that are not a power of 2, we can write it as a sum of powers of 2. (Remember that $x^b \cdot x^c = x^{b+c}$)

Example (Lecture Slide 21):			Powers of 2				
To calculate $7^{17}mod$ 77 we can write $17 = 2^4 + 2^0$.	16	8	4	2	1		
We also have $2^4 = 2^2 \cdot 2^2$ and $2^2 = 2^1 \cdot 2^1$.	24	2 ³	2 ²	2 ¹	2 ⁰		

 $\begin{array}{l} 7^{1} \equiv 7 \mod 77 \Leftrightarrow 7 \mod 77 \ = \ 7 \\ 7^{2} \equiv 49 \mod 77 \Leftrightarrow 49 \mod 77 \ = \ 49 \\ 7^{4} \equiv 7^{2} \cdot 7^{2} \equiv 49 \cdot 49 \mod 77 \Leftrightarrow 2401 \mod 77 \ = \ 14 \\ 7^{8} \equiv 7^{4} \cdot 7^{4} \equiv 14 \cdot 14 \mod 77 \Leftrightarrow 196 \mod 77 \ = \ 42 \\ 7^{16} \equiv 7^{8} \cdot 7^{8} \equiv 42 \cdot 42 \mod 77 \Leftrightarrow 1764 \mod 77 \ = \ 70 \\ 7^{17} \equiv 7^{16} \cdot 7^{1} \equiv 70 \cdot 7 \mod 77 \Leftrightarrow 490 \mod 77 \ = \ 28 \end{array}$

Bonus Exercise:

Use modular exponentiation to solve $4^{64}mod$ 7 and $3^{210}mod$ 15. You can check your results on <u>https://sagecell.sagemath.org</u> with the following syntax (e.g. $3^{128}mod$ 15):

Type some Sage code below and press Evaluate.

1 3**128%15 2		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	Languag	je: Sage ᅌ
Evaluate		Share
6		

Fermat's Factorization

Let p, q be prime and N = pq. Fermat's factoring represents N as a difference of 2 squares:

$$N = x^2 - y^2 = (x + y)(x - y)).$$

Help I Powered by SageMath

First, we start with $x = \lfloor \sqrt{N} \rfloor$ and then increase x by 1 until $x^2 - N$ is square (so that we can derive y) so that $N = x^2 - y^2$ holds.

This method works because we can represent *N* as a difference of 2 squares:

$$pq = (\frac{1}{2}(p+q)^2 - (\frac{1}{2}(p-q)^2)^2 = x^2 - y^2.$$

You will find this explanation with more details in Knospe 2019, p. 178 f.

Bonus Exercise:

Let N = 247; then we first set $x \approx \sqrt{N}$. We obtain x = 16 and derive $x^2 - N = 9$. Because 9 is square we know that y = 3. From above we know that pq = (x + y)(x - y) so we receive $247 = 19 \cdot 13$.

If you need more practice, just choose some primes p, q and derive N. Then use Fermat's factoring to solve N.

Literature

(Knospe 2019) Knospe, Heiko. A Course in Cryptography. Vol. 40. American Mathematical Soc., 2019. <u>https://ebookcentral.proquest.com/lib/senc/reader.action?docID=5962876</u>