

#### Lecture 13

Acceptance and Success Factors in Mobile Business

Mobile Business I (WS 2020/21)

Prof. Dr. Kai Rannenberg

Chair of Mobile Business & Multilateral Security Goethe University Frankfurt a. M.





## Acceptance and Success Factors Motivation

- Which factors are important for acceptance and success in M-Business?
  - Building customer trust
  - Acceptance of technologies in a market
  - Diffusion of M-Business applications and services
- In and why it is important to understand these factors?
  - Need for understanding the customers' choices for using/not using M-Business applications and services and
  - to tailor such services to their actual needs.







## **Consumer Acceptance**

- Mobile applications and services in M-Business can increase the connectedness of their users.
- However, there are several issues related to consumers' acceptance for mobile services and applications, which need to be considered:
  - Willingness to pay for services
  - Network effects
  - Ease of use
  - Quality of service
  - Product limitations
  - Trust in service provider

[JarLanTakTuu2003]





## User Trust in M-Business

- Trust Development Life Cycle
- Framework for Building Trust in M-Business
- Diffusion of Technology
  - Theory of Reasoned Action (TRA)
  - Technology Acceptance Model (TAM)
  - Diffusion of Innovations (DOI)
- Case Study: i-mode vs. WAP



## Definition: Trust

- "A state involving confident positive expectations about another's motives with respect to oneself in situations entailing risk" [BoHo91].
- The definition highlights three characteristics of trust:
  - 1. Trust relationships involves two parties: *trustor* & *trustee*.
  - 2. Trust involves uncertainty and risk.
  - 3. The trustor has faith in the trustee's honesty and believes the trustee will not betray him.



## mobile Components of Customer Trust in business M-Business



- Reliability and security of mobile technology are equally important, since failures in the early stages of the usage of M-Business reduce the customers' trust significantly.
- As mobile technology evolves, the trust focus shifts from technology to the mobile service provider.

[SiauShen2003]



## Initial Trust Formation

- In order to build an initial trust formation, service providers *must* disseminate information, cultivate interest, etc.
  - Enhance customer familiarity, as people tend to trust the familiar, e.g. by general publicity or advertisements.
  - Build vendor reputation, as a good reputation suggests certainty and less risk in conducting business.
  - Deliver high-quality information, as the information posted on a company has a high impact on the customers' perception.
  - Elicit third-party recognition and certification, as the independent nature of third-party certification helps customers to feel more secure in doing business with the M-Business provider.
  - Provide attractive rewards, such as free trials or gift cards helping to attract new customers.



## Continuous Trust Building Overview

- It is important to maintain a trust relationship, as creating trust is timeconsuming and trust can easily be destroyed.
- There are several successful methods derived from E-Business that can be adopted by M-Business companies to overcome trust barriers.



## Continuous Trust Building Details 1

#### Improve site quality:

 User-friendly design of web-sites accessed by mobile devices (e.g. giving customers sufficient information for purchases) helps to convey the vendor's competence.

#### Sharpen business competence:

 Refers to the skills, technical knowledge, and expertise in operating M-Business applications.

#### Maintain company integrity:

 Providers need to be congruent with regard to the actions and the promises given to their customers.

#### Post privacy policy:

- Similar to E-Business providers, M-Business providers should post their privacy policy online, so customers are informed about the information being processed
- Helps to build transparency.

## Continuous Trust Building Details 2

- Strengthen security controls:
  - In order to have secure M-Business transactions, technologies need to be in place that help to allow Multilateral Security for all involved parties.

#### • Foster a Virtual Community:

- By building virtual communities, mobile service providers can replicate the success of web-based online communities and create positive evaluations by their users.
- Encourage communication and increase accessibility:
  - In order to build synergies, the users should be brought into close communication with the M-Business provider, reducing information asymmetries and fostering the provider's credibility and trustworthiness.
- Use external auditing to monitor operations:
  - External auditing helps to maintain the customers' trust by keeping the provider to behave fair and legally.



#### A Framework for Building Trust in M-Business

12

| Mobile<br>Service<br>Providers | Familiarity<br>Reputation<br>Information Quality<br>3 <sup>rd</sup> -Party Recognition<br>Attractive Rewards | Site Quality<br>Competence<br>Integrity<br>Privacy Policy<br>Security Controls<br>Open Communication<br>Community Building<br>External Auditing |
|--------------------------------|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| Mobile<br>Technology           | Feasibility                                                                                                  | Reliability<br>Consistency                                                                                                                      |
|                                | Initial Trust<br>Formation                                                                                   | Continuous Trust<br>Development<br>[SiauShen2003                                                                                                |

#### Overview

- User Trust in M-Business
  - Trust Development Life Cycle
  - Framework for Building Trust in M-Business
- Diffusion of Technology
  - Theory of Reasoned Action (TRA)
  - Technology Acceptance Model (TAM)
  - Diffusion of Innovations (DOI)
- Case Study: i-mode vs. WAP







## Diffusion of Technology Introduction

- What makes a product successful compared to another product?
- How does it get accepted in the market?
- There are different models to explain the diffusion of a technology into the market:
  - Theory of Reasoned Action (TRA) [Ajzen1980]
  - Technology Acceptance Model (TAM) [Davis1989]
  - Roger's Diffusion of Innovations (DOI) [Rogers2003]



## Diffusion of Technology Basic Terminology

- The adoption (process) is a sequence of stages a potential adopter goes through before accepting a new product or service.
- Diffusion is the process by which an innovation is communicated through certain channels over time among the members of a social system. In other words, diffusion refers to the accumulated level of users of an innovation in a market.
- Innovation (process) is the adoption of an idea or behaviour (whether a system, policy, program, device, process, product, or service), that is new to the adopting organisation.
- Adoption is interpreted as the decision to purchase while acceptance refers to the decision to use the product.

#### Overview

- User Trust in M-Business
  - Trust Development Life Cycle
  - Framework for Building Trust in M-Business
- Diffusion of Technology
  - Theory of Reasoned Action (TRA)
  - Technology Acceptance Model (TAM)
  - Diffusion of Innovations (DOI)
- Case Study: i-mode vs. WAP





 TRA posits that individual behaviour is driven by behavioural intentions.

The actual use of an innovation is determined by the individual's behavioural intention to use it.



### Schematics of TRA



 Behavioural intentions are a function of an individual's attitude towards the behaviour and the subjective norm surrounding the performance of the behaviour.

[Ajzen1980]





Attitude towards the Behaviour & Subjective Norm

- Attitude towards the behaviour are the individual's positive or negative feelings about performing a behaviour, determined through an assessment of one's beliefs.
- Subjective norm is defined as an individual's perception of whether people who are important to this individual think the behaviours should be performed.





## Limitations of TRA

- Significant risk of confounding between attitudes and norms since attitudes can often be reframed as norms and vice versa.
- Assumption: that when someone forms an intention to act, they will be free to act without limitation. This is often unfounded.
- In practice, constraints such as limited ability, time, environmental or organisational limits, and unconscious habits will limit the freedom to act.

#### Overview

- User Trust in M-Business
  - Trust Development Life Cycle
  - Framework for Building Trust in M-Business
- Diffusion of Technology
  - Theory of Reasoned Action (TRA)
  - Technology Acceptance Model (TAM)
  - Diffusion of Innovations (DOI)
- Case Study: i-mode vs. WAP







## Technology Acceptance Model (TAM) Introduction

- The Technology Acceptance Model (TAM) by Davis [Davi89] is based on the Theory of Reasoned Action (TRA).
- Tailored towards the acceptance of information technology
- A key purpose of TAM is to provide a basis for tracing the impact of external variables on internal beliefs, attitudes and intentions.
- Two main factors are of prime relevance in explaining system use:
  - "Perceived ease of use"
  - "Perceived usefulness"





## Technology Acceptance Model Main Factors

## Perceived usefulness:

 The degree to which a person believes that using a particular system would enhance his or her job performance

## Perceived ease-of-use:

 The degree to which a person believes that using a particular system would be free from effort

[Davis1989]



## Technology Acceptance Model Use of the Model

- Researchers have simplified TAM by removing the attitude construct found in TRA from the current specification (e.g. [VMDD03]).
  - Attempts to extend TAM have generally taken one of three approaches:
    - 1. Introducing factors from related models
    - 2. Introducing additional or alternative belief factors (risk, emotion, etc.)
    - 3. Examining antecedents and moderators of perceived usefulness and perceived ease of use



## Technology Acceptance Model Limitations

- Both TRA and TAM have strong behavioural elements, assuming that when someone forms an intention to act, they will be free to act without limitation.
- In practice constraints such as limited ability, time, environmental or organisational limits, and unconscious habits will limit the freedom to act.

#### Overview

- User Trust in M-Business
  - Trust Development Life Cycle
  - Framework for Building Trust in M-Business
- Diffusion of Technology
  - Theory of Reasoned Action (TRA)
  - Technology Acceptance Model (TAM)
  - Diffusion of Innovations (DOI)
- Case Study: i-mode vs. WAP





## Diffusion of Innovations (DOI) Introduction

- Diffusion is the process by which an innovation is accepted by a social system, e.g. the market.
- The rate of diffusion is the speed of the new idea spreading from one consumer to the next.
- Adoption is similar to diffusion except that it deals with the psychological processes an individual goes through, rather than an aggregate market process.
- Diffusion of Innovations theory especially focuses on the following topics:
  - Adopters
  - Key innovation characteristics
  - Stages of adoption



Diffusion of Innovations Categories of Adopters

Adopters can be categorised in 5 different groups:

- 1. Innovators
- 2. Early adopters
- 3. Early majority
- 4. Late majority
- 5. Laggards



## Diffusion of Innovations Categorisation of Adopters 1

#### Innovators (2,5%):

- Characteristics: Venturesome, educated, multiple info sources, greater propensity to take risk
- Has the ability to understand and apply complex technical knowledge and can cope with a high level of uncertainty of an innovation.
- The innovator is a catalyst who brings about the use and adoption of new ideas.

#### Early adopters (13,5%):

- Characteristics: Social leaders, popular, educated
- Other members of the group look to these individuals for advice and knowledge about the innovation.



## Diffusion of Innovations Categorisation of Adopters 2

- Early majority (34,0%):
  - Characteristics: Deliberate, many informal social contacts
  - Tend to adopt the innovation just prior to time the average individual adopts it (link between early adopters and later majority).
- Late majority (34,0)%:
  - Characteristics: Sceptical, traditional, lower socio-economic status
     Acceptance comes after the average person accepts
- Laggards (16,0%):
  - Characteristics: Neighbours and friends are main info sources, fear of debt
  - Laggards are those who are consistent or even adamant in resistance to change.

#### Discussion











## Diffusion of Innovations Key Innovation Characteristics

- Relative Advantage:
  - The degree to which the innovation is perceived as being better than the practice it supersedes
- Compatibility:
  - The extent to which adopting the innovation is compatible with what people do
- Complexity:
  - The degree to which an innovation is perceived as relatively difficult to understand and use
- Trialability:
  - The degree to which an innovation may be experimented with on a limited basis before making an adoption (or rejection) decision
- Observability:
  - The degree to which the results of an innovation are visible to others



## Key Innovation Characteristics Example Mobile Telephony

#### Relative Advantage:

- Availability/reachability of the subscriber
- Communicate (almost) anywhere / anytime
- Personal device(s)

#### Compatibility:

 High compatibility in society, as flexibility and reachability get more and more important.

#### Complexity:

- Low to medium:
  - Basic functionality (e.g. telephony) can be used by everyone being capable of using a standard, fixed-line telephone.
  - Advanced features (e.g. SMS) need further training to use them.



## Key Innovation Characteristics Example Mobile Telephony

#### Trialability:

 High: A potential customer can subscribe to a prepaid contract for testing the technology and later on switch to a "normal" subscription based contract.

#### Observability:

- Reachability of the customers anytime and anywhere.
- More and more people are using mobile phones and services.
- People using mobile phones can easily be observed by nonusers.
- The concept and benefit of mobile telephony is easily observable by non-users.





## Five Stage Model for the Diffusion of Innovation

- The adoption of an innovation includes the following stages:
  - **1. Knowledge:** Learning about the existence and function of the innovation
  - **2. Persuasion:** Becoming convinced of the value of the innovation
  - **3. Decision:** Committing to the adoption of the innovation
  - 4. Implementation: Putting it to use
  - **5. Confirmation:** The ultimate acceptance (or rejection) of the innovation





- User Trust in M-Business
  - Trust Development Life Cycle
  - Framework for Building Trust in M-Business
- Diffusion of Technology
  - Theory of Reasoned Action (TRA)
  - Technology Acceptance Model (TAM)
  - Diffusion of Innovations (DOI)
- Case Study: i-mode vs. WAP







Case Study i-mode vs. WAP

- Currently, the separate technologies of (stationary) Internet and mobile telephony converge more and more, allowing new business models to emerge.
- However, by comparing the (more or less successful) adoption of (similar) technologies, one can observe major differences in the customers' adoption behaviour.
- Examples:
  - i-mode (in Japan and Germany)
  - WAP (in Germany)

## Mobile Multimedia Service i-mode History

- Established in February 1999 by NTT DoCoMo in Japan as a service for mobile Internet access.
- Proprietary standard, based on package-based data transmission.
- Requires special i-mode devices
- Advantage: "Always-online"functionality without continuous charging.





## Wireless Application Protocol (WAP)

 In 1997, Ericsson, Motorola, Nokia and Unwired Planet founded the WAP-Forum.



- The WAP-Forum is a non-profit organization with the objective to build up an open standard (protocol) for wireless data-communication.
- More than 300 members worldwide (manufacturers, software industry, computer and telecommunication companies & network-operators)
- Protocol family, developed by the WAP-Forum to provide internet contents on mobile devices
  Universal use, independent from used network technology (GSM, UMTS, etc.)

# mobilei-mode User Base Developmentbusinessand Diffusion Process



44

## i-mode User Base Development



[Nttdocomo2007]



## i-mode User Base Germany

- Number of users in Germany at the beginning of 2003, according to e-plus:
  - Planned: 750.000
  - Achieved: 125.000

[eplus03]

 Mobile Internet Services Penetration in Germany (number of users):

vodafone *live!* 

500.000 4.500.000 5.500.000

[Handelsblatt 2/2004]

E-plus shut down i-mode on 1<sup>st</sup> of April 2008

[Golem2008]

## Key Innovation Characteristics WAP 1

#### Relative advantage:

- WAP provides an access channel to many special Internet pages
  - using the Wireless Markup Language (WML)
  - bringing information to mobile devices.
- However, only a limited amount of content is available.

#### Compatibility:

- High compatibility to previous user experiences, as WAP is based on mobile telephone handsets
- ➔ familiarity
- However, the displayed WAP pages are only of limited quality:
  - user interfaces lack quality,
  - connection-speeds are low

## Key Innovation Characteristics WAP 2

#### Complexity:

 Medium complexity, as WAP is intuitive to use - depending on the browser software used.

#### Trialability:

- Low initial costs, as WAP is based on a pay-per-use schema
- Therefore it offers a high level of trialability.

#### Observability:

- The observability can be enhanced through non-customers watching customers using WAP.
- However, due to limited content and high prices, not many customers use WAP.



## Key Innovation Characteristics i-mode 1

#### Relative advantage:

- i-mode provides a direct Internet access channel to many individuals for whom the Internet was inaccessible previously, as
  - fixed-line Internet was not widely available
  - people were not much at home anyway.

#### Compatibility:

- High compatibility to previous user experiences, as i-mode is based on mobile telephone handsets
- ➔ familiarity
- Also i-mode is highly compatible with the Japanese cultural values
- Enthusiasm for electronic devices





#### Key Innovation Characteristics i-mode 2

- Complexity:
  - Low complexity, as i-mode has an intuitive and easy to use interface, command set, and navigation
  - i-mode uses an Internet browser, which is a scaled-back version of traditional desktop browsers, allowing its user to easily use this innovation.

#### Trialability:

- Low initial costs, as i-mode is based on a per-use tariff-scheme
- Therefore it offers a high level of trialability.
- Subscribers can easily share their devices for trials.

#### Observability:

- i-mode is highly interactive, and interactions can also be seen on the Internet.
- Also the observability can be enhanced through others, witnessing people using i-mode.



## Other factors affecting i-mode adoption and use

- Market situation:
  - NTT DoCoMo is the market leader with a 60% market share in mobile communications.
  - Furthermore, NTT DoCoMo stock majority is owned by the Japanese government.
  - Low penetration of stationary internet connections.
- Vertical integration:
  - NTT DoCoMo has a strong position in the mobile value chain, being vertically integrated into chip, handset, and infrastructure research and development.
- Network investment:
  - NTT DoCoMo has invested proactively into 3G infrastructure (especially packet radio overlay systems) one year ahead of their competitors.
- Self-reinforcing service:
  - There is a "connection" between voice and data services, as customers tend to use more voice services when they use the imode data service (change in consumer behaviour).

## Transferability of i-mode from Japan to Germany? A Summary

#### Japan (ca. 2000):

- Low penetration of stationary internet connections
- 77.000 content-providers
- Commuting
- Service-Level
- Low penetration of SMS iMode offering cheap messaging
- "i"-button/ colour-displays
- Willingness to pay for services
- Private subscriber communities for special topics

#### Germany (ca. 2000):

- Primarily voice + SMS usage
- Only about 160 content providers
- Scepticism towards WAP/imode
- SMS is the "weapon of choice" for mobile messaging.



## Reasons for the Failure of WAP Services

- Usage of the term "mobile Internet" for marketing WAP confused customers and nourished wrong expectations towards this technology. Compared with those expectations WAP had:
  - High costs for the content
  - Complex billing system
  - Low speed
  - Low usability
  - •
- When WAP was rolled out, only a limited amount of devices with WAP-capabilities was available.
- Internet-based providers offering mobile content for free also lowered the demand for WAP services









Conclusion: WAP vs. i-mode

- It is unlikely that i-mode's success in Japan can be transferred to other markets, due to the unique market situation in Japan.
- But key lessons learned from i-mode's success story in Japan include:
  - Importance of a trusted, branded, useful, easy-touse, holistic package of services
  - The value of investment and leveraging of technological infrastructure such as networks and handsets

#### Literature 1



- [Ajze1980] Ajzen, I.: Understanding Attitudes and Predicting Social Behavior, Prentice-Hall, Englewood Cliffs, NJ, 1980.
- [BarnesHuff2003] Barnes, S.J., Huff, S.L.: Rising Sun: iMode and the Wireless Internet, Communications of the ACM, Vol. 46, No. 11, pp. 79-84, 2003.
- [BoonHolmes1991] Boon, S., Holmes, J.: The dynamics of interpersonal trust: Resolving uncertainty in the face of risk, in Hinde, R., Groebel, J. (Eds.): Cooperation and Prosocial Behaviour, Cambridge University Press, Cambridge, pp. 190-211, 1991.
- [BüllingStamm2004] Büllingen, F., Stamm, P.: Mobile Multimedia-Dienste: Deutschlands Chance im globalen Wettbewerb, Bundesministerium für Wirtschaft und Arbeit, 2004.
- [Davis1989] Davis, F. D.: Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology, MIS Quarterly Vol. 13, No. 3, pp. 319-339, 1989.
- [HungKuChang2003] Hung, S.-Y., Ku, C.-Y., Chang, C.-M.: Critical factors of WAP services adoption: An empirical Study, Electronic Commerce Research and Applications, No. 2, pp. 42-60, 2003.
- [Istheory2013] Theories used in IS Research, http://istheory.byu.edu/wiki/Theory\_of\_reasoned\_action, accessed 2013-10-15.

### Literature 2

- [JarLanTakTuu2003] Jarvenpaa, S.L., Lang, K.R., Takeda, Y., Tuunainen, V.K.: *Mobile Commerce at Crossroads*, Communications of the ACM, Vol. 46, No. 12, pp. 41-44, 2003.
- [Marcussen2002] Marcussen, C.: Comparing SMS and WAP in Europe with imode in Japan, www.crt.dk/uk/staff/chm/wap/smsimode.pdf, accessed 2007-01-12, 2002.
- [NohriaLeestm2001] Nohria, N., Leestma, M.: A moving Target: The Mobile-Commerce Customer, MIT Sloan Management Reviews, Spring 2001.
- [Nttdocomo2007] NTT DoCoMo, www.nttdocomo.com, accessed 2007-12-18.
- [RistKoivuKest2005] Ristola, A., Koivumaki, T., Kesti, M.: The Effect on Familiar Mobile Device and Usage Time on Creating Perceptions Towards Mobile Services, International Conference on Mobile Business (ICMB'05), pp. 384-391, 2005.
- [Rogers2003] Rogers, E. M.: The Diffusion of Innovations, 5<sup>th</sup> Edition, Free Press, New York, London, Toronto, Sidney, 2003.
- [SiauShen2003] Siau, K., Shen, Z.: Building Customer Trust in Mobile Commerce, Communications of the ACM, Vol. 46, No. 4, pp. 91-94, 2003.
- [VenMorDavDav2003] Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D.: User acceptance of information technology: Toward a unified view, MIS Quarterly, vol. 27, no. 3, pp. 425-478, 2003.