Assignment 4 - Cryptography II

Information \& Communication Security (WS 2018/19)

Abtin Shahkarami(M.Sc.)
Chair of Mobile Business \& Multilateral Security
Goethe-University Frankfurt a. M.

Exercise 1

Describe Diffie-Hellman key exchange method in detail.

Exercise 1 - Solution

Diffie-Hellman Key Exchange

mobile business

Exercise 1 - Solution (Cont.)

a) Alice and Bob aqree publiclv on a cvclic groud. e.g. $G=\langle g\rangle . G=\mathbb{F}^{*}$.
b) Alice chooses randomly some $0 \leq a<|G|$ and computes A := g^{a}. Bob chooses randomly some $0 \leq b<|G|$ and computes $B:=g^{b}$.
c) Alice sends $\operatorname{Bob} A$. Bob sends Alice B.
d) Alice computes $S:=B^{a}=\left(g^{b}\right)^{a}=g^{a b}$. Bob computes $S:=\mathrm{A}^{a}=\left(g^{a}\right)^{b}=g^{a b}$.
e) Now Alice and Bob can use S as their secret key to encrypt and decrypt messages.

mobile business

Exercise 1 - Solution (Cont.)

Outside of this process Eve only knows $G=\langle g\rangle, A$ and B, but she does not know a, b, S. Thus Eve either needs to compute $a=\log _{g} A$ and $b=\log _{g} B$ (this is known as discrete logarithm problem and is assumed to be "hard"); or she has some other magical function f such that $S=f(A, B, G)$. Clearly, security of this system highly relies on the choice of the group, i.e. g. For example, taking $G=(\mathbb{Z} / n \mathbb{Z},+)=\langle 1\rangle$, thus exponentiation g^{a} boils down to $g \cdot a=a$ in this setting.

Exercise 2

In order to prepare to receive encrypted messages with the RSA cryptosystem, Alice has chosen primes $p=23$ and $q=37$. She has also chosen $e=13$ as her public key (also called her public exponent).
a) Determine Alice's public modulus n.

mobile business

Links to read $\&$ watch

- https://www.khanacademy.org/computing/computer-science/cryptography/modern-crypt/v/intro-to-rsaencryption
- http://mathworld.wolfram.com/RSAEncryption.html
- https://simple.wikipedia.org/wiki/RSA algorithm

Exercise 2 - Solution (a)

Alice's public modulus is $\mathrm{n}=\mathrm{p} \cdot \mathrm{q}=23 \cdot 37=851$.

mobile $)$ business

b) Suppose that Bob wants to send Alice the message BAT. Determine the base twenty-six representation of the ciphertext that he will send to Alice.

mobile business

Exercise 2 - Solution (b)

Converting the message BAT to base twenty-six gives $\mathrm{BAT}=1 \cdot 26^{2}+0 \cdot 26+19$ $=695$.
Therefore, since the RSA encryption function is $\mathrm{c}=m^{e}$ MODn, Bob's ciphertext is given by $\mathrm{c}=695^{13}$ MOD851. In order to compute the modular exponential, we repeatedly square:

$$
\begin{gathered}
695^{2} \equiv 508(\bmod 851) \\
695^{4} \equiv 508^{2} \equiv 211(\bmod 851) \\
695^{8} \equiv 211^{2} \equiv 269(\bmod 851) .
\end{gathered}
$$

We then conclude that

$$
695^{13} \equiv 695^{8} .695^{4} .695 \equiv 269.211 .695 \equiv 593.695 \equiv 251(\bmod 851) .
$$

Thus, the ciphertext is $\mathrm{c}=251$ which converted to base twenty-six reads

$$
251=9 \cdot 26+17=\mathrm{JR} .
$$

mobile business

c) Determine Alice's private key (or decryption key) d.

Exercise 2 - Solution (c)

Alice's decryption key is given by $\mathrm{d}=e^{-1} \operatorname{MOD} \varphi(\mathrm{n})$ where $\varphi(\mathrm{n})=(\mathrm{p}-1) \cdot(\mathrm{q}-1)$. We find $\varphi(\mathrm{n})=22 \cdot 36=792$, so that d $=13^{-1}$ MOD792. In order to calculate this modular inverse, we use the extended Euclidean algorithm so that:

$$
\begin{gathered}
792=60 \cdot 13+12 \\
13=12+1
\end{gathered}
$$

Back substitution therefore gives:

$$
-792+61 \cdot 13=1
$$

from which we conclude that

$$
\mathrm{d}=13^{-1} \mathrm{MOD} 792=61
$$

mobile $)$ business

d) Suppose that Bob has also sent Alice the ciphertext $y=625$. Determine the base twenty-six representation of the plaintext message.

mobile business

Exercise 2 - Solution (d)

The RSA decryption function for Alice is given by $\mathrm{m}=c^{d}$ MODn so that Bob's plaintext message is $\mathrm{m}=625^{61} \mathrm{MOD} 851$. In order to compute the modular exponential, we repeatedly square:
$625^{2} \equiv 16(\bmod 851)$
$625^{16} \equiv 9^{2} \equiv 81(\bmod 851)$
$625^{4} \equiv 16^{2} \equiv 256(\bmod 851) \quad 625^{32} \equiv 81^{2} \equiv 604(\bmod 851)$.
$625^{8} \equiv 256^{2} \equiv 9(\bmod 851)$
We then conclude that

$$
\begin{gathered}
625^{61} \equiv 625^{32} \cdot 625^{16} \cdot 625^{8} \cdot 625^{4} \cdot 625 \equiv 604 \cdot 81 \cdot 9 \cdot 256 \cdot 625 \\
\equiv 784(\bmod 851) .
\end{gathered}
$$

Thus, the plaintext is $x=784$ which converted to base twenty-six reads

$$
784=1 \cdot 26^{2}+4 \cdot 26+4=\text { BEE. }
$$

mobile

 business
Exercise 3

Install PGP Email Desktop (trial version) or a similar software for mail encryption on your system. Create a new key pair, and send a signed and encrypted message to abtin.shahkarami@m-chair.de containing your newly created public key and a short summary of your experiences.
PGP can be downloaded from
http://www.symantec.com/business/desktop-email.

Looking forward to your Emails ©

Thank you!

- Questions: security@m-chair.de

