Information \& Communication Security (WS 18/19)

Cryptography I

Prof. Dr. Kai Rannenberg
Chair of Mobile Business \& Multilateral Security
Goethe University Frankfurt a. M.

Agenda

- Introduction
- Symmetric Key-Cryptography
- General process
- Substitution ciphers
- Caesar cipher
- Vigenére cipher
- One time pad
- AES
- Advantages and Problems
- Public key cryptography

Agenda

- Introduction
- Symmetric Key Cryptography
- General process
- Substitution ciphers
- Caesar cipher
- Vigenére cipher
- One time pad
- AES
- Advantages and Problems
- Public key cryptography

Cryptography

Ciphertext

aintext

 Substitution

ω

Cryptosystem

A Cryptosystem is a 5-tuple (P,K,C,E,D)

[Bi2005]

Example

Cryptographic Systems (I)

- Intention
- Confidentiality (secrecy of messages): encryption systems
- Integrity (protection from undetected manipulation) and accountability:
authentication systems and digital signature systems
- Key distribution
- Symmetric: Both partners have the same key.
- Asymmetric:

Different (but related) keys for encryption and decryption

In practice mostly hybrid systems

Cryptographic Systems (II)

Asymmetric

Public key

Sender

Encrypt

Plain text

Private key

Kerckhoffs' principle

- The principle (first stated in 1883):
- The secret lies within the key and not within the algorithm;
- Thus "Security through obscurity" is not a sustainable solution.
- In our small example:
- Separation of algorithm \boldsymbol{e} and key $\boldsymbol{k}_{\boldsymbol{e}}$

mobile

 business
Cryptography - Important Concepts

- One-Time Pad - Shannon / Vernam
- Theoretically completely unbreakable, but highly impractical
- Shannon's concepts: Confusion and Diffusion
- Relation between M, C, and K should be as complex as possible ($M=$ message, $C=$ cipher, $K=$ key)
- Every ciphertext character should depend on as many plaintext characters and as many characters of the encryption key as possible
- "Avalanche effect" (small modification, big impact)
- Trapdoor function (one-way function)
- Fast in one direction, not in the opposite direction (without secret information)
- Knowing the secret allows the function to work in the opposite direction (access to the trapdoor)

Attacks

- In a ciphertext only attack, the adversary has only the ciphertext. Her goal is to find the corresponding plaintext. If possible, she may try to find the key, too.
- In a known plaintext attack, the adversary has the plaintext and the ciphertext that was enciphered. Her goal is to find the key that was used.
- In a chosen plaintext attack, the adversary may ask that specific plaintexts be enciphered. She is given the corresponding ciphertexts. Her goal is to find the key that was used.

Agenda

- Introduction
- Symmetric Key Cryptography
- General process
- Substitution ciphers
- Caesar cipher
- Vigenére cipher
- One time pad
- AES
- Advantages and Problems
- Public key cryptography

Symmetric Key Cryptography

 Symmetric Encryption Systems Applications \& Examples- Classical cryptosystems are usually based on symmetric encryption systems.
- Typical applications
- confidential storage of user data
- transfer of data between 2 users who negotiate a key via a secure channel
- Examples
- Vernam-Code (one-time pad, Gilbert Vernam)
- key length = length of the plaintext (information theoretically secure)
- DES: Data Encryption Standard
- key length 56 bit, so 2^{56} different keys
- AES: Advanced Encryption Standard (Rijndael, [NIST])
- 3 alternatives for key length: 128, 192 und 256 bit

Agenda

- Introduction
- Symmetric Key Cryptography
- General process
- Substitution ciphers
- Caesar cipher
- Vigenére cipher
- One time pad
- AES
- Advantages and Problems
- Public key cryptography

Symmetric Key Cryptography General Process

[based on Federrath and Pfitzmann 1997]

Symmetric Key Cryptography General Process

Symmetric Key Cryptography General Process

- Keys have to be kept secret (secret key crypto system).
- It must not be possible to infer on the plaintext or the keys used from the encrypted text (ideally encrypted text is not distinguishable from a numerical random sequence).
- Each key shall be equally probable.
- In principle each system with limited key length is breakable by testing all possible keys.
- Publication of encrypting and decrypting functions (algorithms) is considered as good style and is trust-building.
- Security of cryptosystems should base on the strength of chosen key lengths.

Agenda

- Introduction
- Symmetric Key Cryptography
- General process
- Substitution ciphers
- Caesar cipher
- Vigenére cipher
- One time pad
- AES
- Advantages and Problems
- Public key cryptography

Caesar Cipher

| A | B | C | D | E | F | G | H | I | J | K | L | M |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |

N O P Q R S T U V W X Y Z $\begin{array}{lllllllllllllllllllll}13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 & 25\end{array}$

- We assign a number for every character.
- This enables us to calculate with letters as if they were numbers.

Caesar Cipher

- For $k \in\{0 . .25\}$ we have:
- An encryption function:
- e: x -> (x+k) mod 26
- A decryption function:
- d: x -> (x-k) mod 26
- In this case $\mathrm{k}_{\mathrm{e}}=\mathrm{k}_{\mathrm{d}}$

Example

Some Attacks

- In case of a known plaintext attack it is trivial to get the key used.
- There are only 26 possible keys. This cipher is therefore vulnerable to a brute force attack.
- This cipher is also vulnerable to a statistical ciphertext-only attack.

Assessment of Caesar Cipher

- Of course this is a very simple form of encryption.
- The encryption and decryption algorithms are very easy and fast to compute.
- It uses a very limited key space ($\mathrm{n}=26$).
- Therefore, the encryption is very easy and fast to compromise.

Can We Make it More Secure?

- Use a permutation of the alphabet as the key.
- Example:

$$
\begin{aligned}
& \text { A B C D E F G H I J K L M } \\
& \text { Q WE R T Z U I OPAS D } \\
& \text { N O P Q R S T U V WX Y Z } \\
& \text { F G H J K L Y X C V B N M } \\
& \text { : "HELLO" -> "ITSSG" }
\end{aligned}
$$

Assessment

- Use of permutations increases the key space.
- Therefore, a brute force attack becomes more difficult.
- The encryption and decryption are not much harder to compute.
- Table lookup
- Still vulnerable to a statistical ciphertextonly attack.

Statistical Ciphertext-only Attack

- Use statistical frequency of occurrence of single characters to figure out the key.
- Language dependent
- Frequencies of character pairs (bigrams) may also be used

E	11.1607%	M	3.0129%
A	8.4966%	H	3.0034%
R	7.5809%	G	2.4705%
I	7.5448%	B	2.0720%
O	7.1635%	F	1.8121%
T	6.9509%	Y	1.7779%
N	6.6544%	W	1.2899%
S	5.7351%	K	1.1016%
L	5.4893%	V	1.0074%
C	4.5388%	X	0.2902%
U	3.6308%	Z	0.2722%
D	3.3844%	J	0.1965%
P	3.1671%	Q	0.1962%

[www.oxforddictionaries.com/words/what-is-the-frequency-of-the-letters-of-the-alphabet-in-english]

Agenda

- Introduction
- Symmetric Key-Cryptography
- General process
- Substitution ciphers
- Caesar cipher
- Vigenére cipher
- One time pad
- AES
- Advantages and Problems
- Public key cryptography

Vigenére Cipher

- The Vigenére cipher chooses a sequence of keys, represented by a string.
- The key letters are applied to successive plaintext characters.
- When the end of the key is reached, the key starts over.
- The length of the key is called the period of the cipher.

Vigenére Tableau

 A A BCDEFGGHIJKLMNOPORSTUVWXYZ B BCDEFGHI JKLMNOPQRSTUYWXYZA C CDEFGHIJKLMNOPQASTUVWXYZAB D DEFGH\|JKLMNOPQRSTUVWXYZABC E EFGHIJKLMNOPQRSTUVWXYZABCD FFGHIJKLMNOPOASTUVWXYZABEDE GGHIJKLMNOPGASTUYWXYZABCDEF HHIJKLMNOPQRSTUYWXYZABODEFG I I JKLMNOPGRSTUVWXYZABCDEFGH $J J K L M N O P Q R S T U Y W X Y Z A B C D E F G H I$ $K K L M N O P O R S T U Y W X Y Z A B C D E F G H I J$ L LMNOPORSTUVWXYZABEDEFGH\| J K $N N O P Q A \mathcal{A} T U W X Y Z A B C D E F G H Y K L M$
O OP OASTUNWXYZABCDEFGHI JKLMN P P OASTUV UXXYZABCDEFGHI \&KL MNO O ORSTUYWXYZABCDEFGHI JKLMNOP
R R STUVWXYZABCDEFGHJJKLMNORG S STUVWXYZABCDEFGHIJKLMNOPQR $T T U V W X Y Z A B G D E F G H I J K L M N O \bar{P}$ Q A S UUVWXYZABCDEFGHIJKLMNQPQA SF $V Y W X Y Z A B C D E F G H I J K L M O P Q R S T U$
WWXYZABCDEFGHIJKLMNOPOASTUV $X X Y Z A B C D E F G H I J K L M N Q P Q R S T U V W$ $Y Y Z A B C D E F G H I J K L M N Q P Q R S T U V W X$ $Z Z A B C D E F Q H I J K L M N O P Q R$ STUVWXY

Example

- Let the message be "THE BOY HAS THE BAG"
- and let the KEY be "VIG"

$$
\begin{aligned}
& \text { PT=T H E B O Y H A S T H E B A G } \\
& K=V \text { I GV I GV I GV I GV I G } \\
& C T=O \text { P K WW E C I Y O P K W I M }
\end{aligned}
$$

Assessment Vigenére Cipher

- For many years, the Vigenére cipher was considered unbreakable.
- Then a Prussian cavalry officer named Kasiski noticed that repetitions occur when characters of the key appear over the same characters in the plaintext.
- The number of characters between successive repetitions is a multiple of the period (key length).
- Given this information and a short period the Vigenére cipher is quite easily breakable.
- Example: The Caesar cipher is a Vigenére cipher with a period of 1.

Example Vigenére Cipher

- Let the message be „THE BOY HAS THE BAG" and let the key be „VIG":

Example

Example

- Let the message be "HELLO"
- and let the KEY be "SEC"
- a=ZINLO
- b=ZINDS
- c=ZENNO

Agenda

- Introduction
- Symmetric Key Cryptography
- General process
- Substitution ciphers
- Caesar cipher
- Vigenére cipher
- One time pad
- AES
- Advantages and Problems
- Public key cryptography

One Time Pad

- Invented by Gilbert Vernam
- The one-time pad is basically a Vigenére cipher.
- The length of the key is as long as the length of the plaintext.
- Therefore, there are no periodic reoccurrences.
- The key is randomly chosen and only used once.
- Every key has the same probability.

Example One Time Pad

[based on Federrath and Pfitzmann 1997]

Example

X_{i}	S_{i}	Y_{i}
0	0	0
0	1	1
1	0	1
1	1	0

Truth Table of the XOR operation

$a=$	1	1	1	1
$b=$	1	0	1	1
$c=$	1	1	0	1

Assessment One Time Pad

- The one time pad is unbreakable by ciphertext only attacks.
- Example: Let the ciphertext be "FGHA" .
- Since we know the key length is at least 4 and the probability of every possible key is equal, the plaintext can be any 4-letter word possible.
- In a known plaintext attack we can deduct the key.
- Then we know which key was used to encrypt the message we already know.
- But the next message is encrypted with a different key, because every key is only used once.
- The same applies to a chosen plaintext attack.
- The one-time pad is information theoretically secure and provably impossible to break.

Agenda

- Introduction
- Symmetric Key Cryptography
- General process
- Substitution ciphers
- Caesar cipher
- Vigenére cipher
- One time pad
- AES
- Advantages and Problems
- Public key cryptography

Advanced Encryption Standard (AES) - History

- The Data Encryption Standard (DES) was designed to encipher sensitive but not classified data.
- The standard has been issued in 1977.
- In 1998, a design for a computer system and software that could break any DES-enciphered message within a few days was published.
- By 1999, it was clear that the DES no longer provided the same level of security it had 10 years earlier, and the search was on for a new, stronger cipher.
- AES Rijndael was a winner of U.S. National Institute of Standards and Technology bid for advanced encryptions.
- AES has been approved for Secret or even Top Secret information by the NSA.

AES - Functionality

- Variable number of rounds $(10,12,14)$
- Depending on key size (128-bit, 192-bit, 256bit).

Encryption Round (1)

AES

- AddRoundKey
- XOR (mix bits of) current state a and round key
- Round key k derived using key schedule
- SubBytes
- Substitution using a lookup table (S-Box)

Encryption Round (2)

AES

- ShiftRows
- Shift each row by row index
- MixColumns
- 4 key bytes combined into each column using polynomial multiplication modulo 2^{8} [in $\mathrm{GF}\left(2^{8}\right)$]
- GF = Galois field = finite field

Agenda

- Introduction
- Symmetric Key Cryptography
- General process
- Substitution ciphers
- Caesar cipher
- Vigenére cipher
- One time pad
- AES
- Advantages and Problems
- Public key cryptography

Symmetric Encryption

Advantage: Algorithms are very fast

Algorithm	Performance*
RC6	78 ms
SERPENT	95 ms
IDEA	170 ms
MARS	80 ms
TWOFISH	100 ms
DES-ede	250 ms
RIJNDEAL (AES)	65 ms

* Encryption of 1 MB on a Pentium 2.8 GHz, using the FlexiProvider Java)
[J. Buchmann: Lecture Public Key Infrastrukturen, FG Theoretische Informatik, TU-Darmstadt]

Disadvantage: Key Exchange

[adopted from J. Buchmann: Lecture Public Key Infrastrukturen, FG Theoretische Informatik, TU-Darmstadt]

A Possible Solution

[J. Buchmann: Lecture Public Key Infrastrukturen, FG Theoretische Informatik, TU-Darmstadt]

Key Management in Symmetric Encoding Systems

- One key per communication pair is necessary.
- Secure agreement and transfer are also challenging.
- A center for key distribution is possible but this party then knows all secret keys!

Key Distribution Center KDC

Remark

Roger Needham / Butler Lampson
"Anybody who asserts that a problem is readily solved by encryption, understands neither encryption nor the problem."

[Marshall Symposium 1998] [Randell 2004]

References

- [Bi2005] Matt Bishop: Introduction to Computer Security. Boston: Addison Wesley, 2005. pp. 97-113
- [The Marshall Symposium] The Marshall Symposium: Address Roger Needham, May 29, 1998, Rackham School of Graduate Studies, University of Michigan web. archive.org/web/20081201182254/http:/www.si.umich. edu/marshall/docs/p201.htm, accessed 2015-04-15.
- [Randell 2004] Randell, B. (2004) Brief Encounters; Pp. 229235 in: Andrew Herbert, Karen Spärck Jones: Computer Systems: Theory, Technology, and Applications; New York, Springer 2004
- [Federrath Pfitzmann 1997] Hannes Federrath, Andreas Pfitzmann: Bausteine zur Realisierung mehrseitiger Sicherheit. in: Günter Müller, Andreas Pfitzmann (Hrsg.): Mehrseitige Sicherheit in der Kommunikationstechnik, Addison-Wesley-Longman 1997, 83-104.

