

Lecture 8

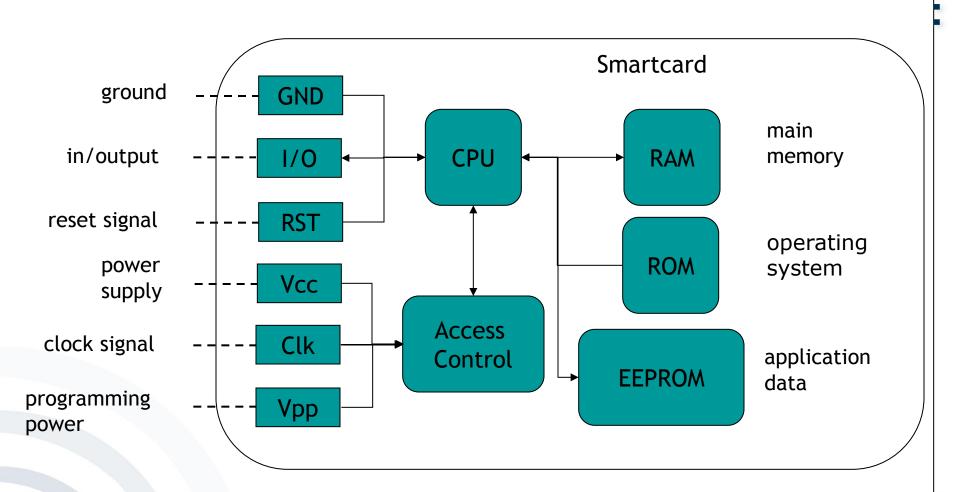
Smartcards and Related Application Infrastructures

Mobile Business I (WS 2014/15)

Prof. Dr. Kai Rannenberg

Deutsche Telekom Chair of Mobile Business & Multilateral Security Johann Wolfgang Goethe University Frankfurt a. M.

Smartcards and Related Application Infrastructures


- Smartcards Introduction
- Subscriber Identity Module (SIM)
- WAP Identity Module (WIM)
- Universal SIM (USIM) and UICC
- IP Multimedia Services Identity Module (ISIM)
- New Applications CamWebSIM

- Small computers with memory, operating system, software, processor, I/O and access control
- Chip protected against manipulation
- After being initialised with keys and other data smartcards are distributed to their users.

Smartcards:

[Source: SecCommerce2013]

 Used when security of data (e.g. for keys, signatures, physical access control, payment) is needed in insecure environments

• Examples:

- Phone cards of Deutsche Telekom
- Signature cards according to German Signature Law
- Smartcard applications for PC
- Smartcards for mobile communication (SIMs)

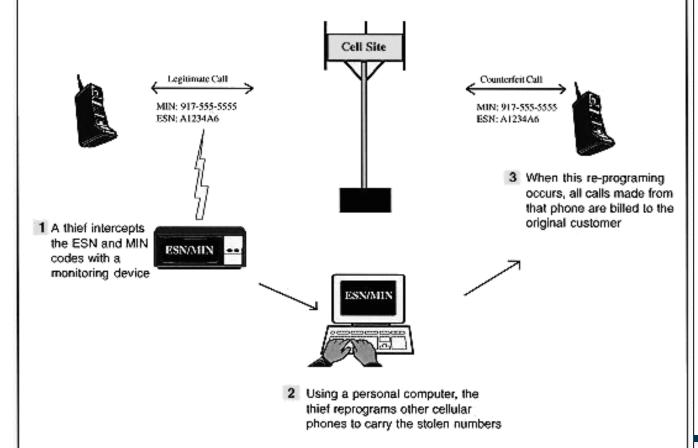
Smartcards - Examples:

Protection needed against:

- Unauthorised usage of services through forged user data
- Duplication of a user's credentials
- "Cracking" of credentials
- Billing fraud

mobile solutions

CELLULAR COUNTERFEITING/CLONING FRAUD


Example for faulty system design (CDMA)

Duplication of intercepted user IDs

CDMA2000 overcame this by introducing the CSIM.

Cellular Phone Counterfeiting

With each call made, a cellular phone transmits an Electronic Serial Number (ESN) and a Mobile Identification Number (MIN) identifying the caller. Possession of these numbers is the key to the counterfeiting.

08/96

Produced by AT&T VAreless Services

Overview

Smartcards and Related Application Infrastructures

- Smartcards Introduction
- Subscriber Identity Module (SIM)
 - Functionality
 - Technology
 - SIM Application Toolkit (SAT)
- WAP Identity Module (WIM)
- Universal SIM (USIM) and UICC
- IP Multimedia Services Identity Module (ISIM)
- Applications CamWebSIM

The Subscriber Identity Module (SIM)

 In GSM and UMTS since 1991, upcoming for WLAN

- Total Barrier
- Represents contract between subscriber
 & network operator

- By November 2014 more than 7.2 billion mobile-cellular subscriptions [ITU2014, GSMAI2014]
- More countries with SIM infrastructure (219, 2013-Q3) than with McDonald's (118, 2013-Q3) and more than UN member states (193, 2013-Q3) [GSM2013, McDonalds2013, UN2013]
- More and more called "Subscriber Identification Module" to reflect progress in the general field of Identity Management

Smartcards for Mobile Communication

- SIMs are Smartcards:
 - SIM cards serve as security medium.
 - Tamper-resistance prevents counterfeiting.
 - robust design
- Contain International Mobile Subscriber Identity (IMSI) for subscriber identification and the key K_i provided by the mobile operator
- Reliably execute computational functions for the mobile device

- SIM serves as "identity card" for GSM cellular phone subscribers.
- SIM identifies the issuer of the card important for the billing of roaming subscribers by roaming partner.
- SIM allows for secure billing of roaming subscribers through SIM-cryptography – important for card issuer.
- SIM contains additional configuration data of the GSM system.

Card Content (Extract)

Protected data:

- IMSI, PIN, PUK
- A3, A8 crypto algorithms
- List of subscribed services
- Language used by the subscriber
- Dynamic data:
 - Cell information
 - Frequency information
 - Dynamically generated (session) keys
 - Attributes of GSM login
 - User data (address book, telephone list, SMS memory)

Integration into Mobile Phones

- ETSI GSM 11.11 [GSM2006] specifies electrical as well as software interfaces between SIM and device.
 - A serial interface is used for accessing the card.
 - Communication through SIM commands
 - Device can access files or execute actions through SIM commands.
 - "SIM Application Toolkit" allows for implementing of additional applications on a SIM.
- Meanwhile SIMs are available in different form factors
 - Same size as 'regular' smart cards (Full-size, FF).
 - Mini-SIM (2FF) introduced circa 1996
 - Micro-SIM (3FF) introduced in 2010
 - Nano-SIM (4FF) introduced in 2012

[Wiki2014]

SIM Application Toolkit – SAT

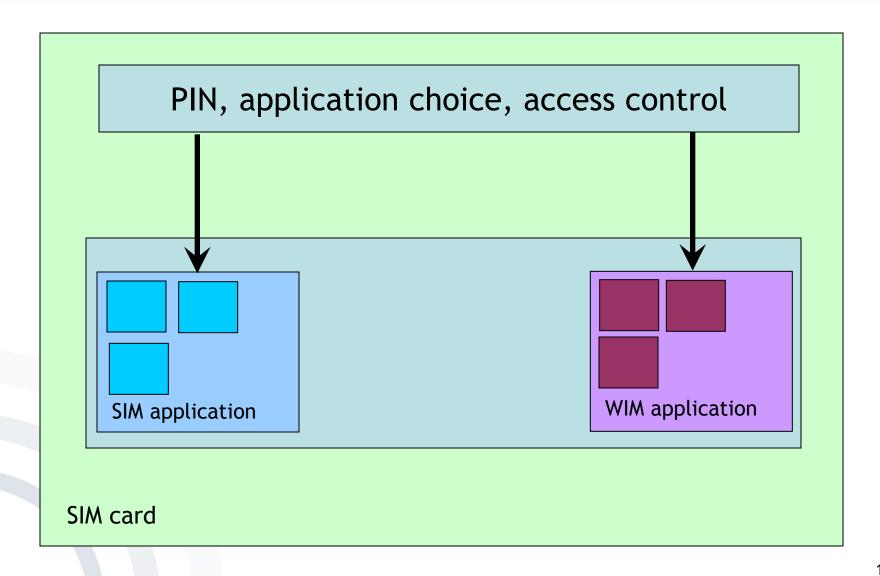
- Provides an interface for Value Added Services implemented on programmable SIMs for interacting with mobile devices
- Standardised 1996 as ETSI GSM 11.14, extended 1999 [GSM2006]
- Controls I/O, Telephony, Download
- Allows for security functionality
- "Living standard"

SAT - Application Examples

- Mobile Banking and Brokerage
 - T-Mobile and T-Online SMS banking
- Secure payment via cellular phone
- Authentication of users trying to access servers
- Location-based services
 - ATM search, navigation
- Security applications in general
 - Mobile signatures

Smartcards and Related Application Infrastructures

- Smartcards Introduction
- Subscriber Identity Module (SIM)
- WAP Identity Module (WIM)
- Universal SIM (USIM) and UICC
- IP Multimedia Services Identity Module (ISIM)
- Applications CamWebSIM



WIM - WAP Identity Module

- WAP is a protocol family implementation of Client/Server applications on mobile devices.
- Originally WAP did not provide sufficient end-to-end security for applications.
- The WAP Identity Module (WIM) should solve security problems raised by WAP.
- WIM is implemented as an additional application on a SIM.
- More and more called "Wireless
 Identification Module" to reflect progress in
 the general field of Identity Management

SIM / WIM - Structure:

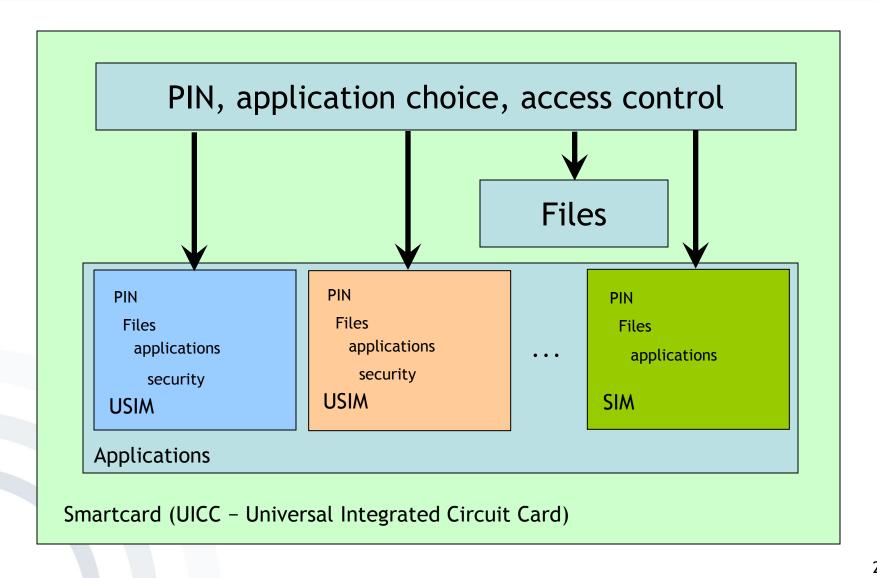
WIM - Security Functionality

- Secure storage for keys and certificates
- Tamper resistance of SIM based crypto algorithms
- Standardised interface to security functions (PKCS#15)
- RSA signatures are implemented on WIM

- Not in widespread use
- Many demonstrations, including signature applications
- Smartcard manufacturers provide WIM as an option for SIMs (e.g. Gieseke & Devrient's StarSIM®).
- Till now no WIM has been certified as signature creation device as required by German "Signaturgesetz" (SigG).

Smartcards and Related Application Infrastructures

- Smartcards Introduction
- Subscriber Identity Module (SIM)
- WAP Identity Module (WIM)
- Universal SIM (USIM) and UICC
- IP Multimedia Services Identity Module (ISIM)
- Applications CamWebSIM



- Standardised in 3GPP TS 21.111 and 3GPP TS 31.102 [GSM2006]
- Successor of SIM in 3G networks (but 3G networks are downward compatible to many SIMs)
- Supports different "virtual" USIMs and SIMs on one card – i.e. multifunctional smartcard
- Specified as "UMTS-SIM", to support authentication, authorisation and computation of future services

USIM on UICC - Structure:

- Support for multiple applications
- End-to-end security from the USIM to the application
- Authentication of the network towards the USIM via cryptography
 - Multilateral Security is possible!
- Downward compatible to SIM
- Extended phone book on card:
 - Email addresses
 - Multiple names & numbers for each entry
 - More memory
 - Standardised entries

Visions of new Opportunities

- Market entry of USIM "disguised" as SIM
 UMTS activated by operator
- Multiple USIMs possibly from competing providers can technically coexist on one card. Selection via menu on mobile device
 Reduction of operator switching cost
- Switching to anonymous prepaid USIM as a privacy option when using privacy sensitive services?

UICCs as Secure Elements

- Secure Elements (SE) are hardware tokens, that offer secure services, e.g. tamper-proof storage and cryptographic operations (cf. Lecture 12).
- UICCs are one form factor of a Secure Element (SE), enabling secure mobile applications and services.

[DTAG2014]

Smartcards and Related Application Infrastructures

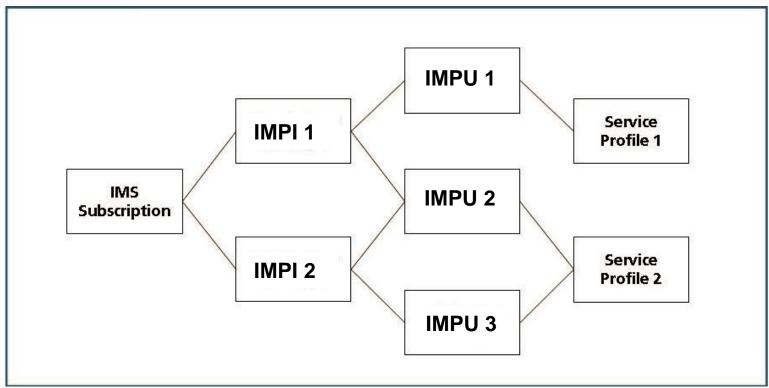
- Smartcards Introduction
- Subscriber Identity Module (SIM)
- WAP Identity Module (WIM)
- Universal SIM (USIM) and UICC
- IP Multimedia Services Identity Module (ISIM)
- Applications CamWebSIM

- An IP Multimedia Services Identity Module (ISIM) is an application running on a UICC smart card in a 3G mobile telephone in the IP Multimedia Subsystem (IMS).
- It contains parameters for identifying and authenticating the user to the IMS.
- The ISIM application can co-exist with SIM and USIM on the same UICC making it possible to use the same smartcard in both GSM networks and earlier releases of UMTS.
- It is specified in 3GPP TS 31.103 [3GPP2013] and described in e.g. [GSM2006].

User Identifiers ("Identities") and Secret

- The ISIM contains:
 - One "IM Private Identity"
 - One or more "IM PUblic Identities"
 - A long-term secret used to authenticate and calculate cipher keys
- The IM Private Identity (IMPI)
 - Unique global identifier per IMS subscriber: username@operator.com
 - Assigned by the home network operator
 - Used for e.g. registration, authorisation, administration, and billing
 - Not accessible to the user
 - Only visible to control nodes inside the IMS
 - One ISIM application includes only one IMPI but an IMS user may have several UICC cards carrying an ISIM application or a UICC card with several different ISIM applications.
- IM PUblic Identities (IMPUs)
 - Every IMS subscriber has one or more IMPUs, e.g. user@operator.com, or tel:+1-212-555-12345.
 - Used for requesting communications to other users
 - Visible to the outside, e.g. to be shown on a business card

Service Profile


- identifies the services a user may currently use such as video telephony, VoIP, Presence
- defined and maintained in the Home Subscriber Server (HSS) of the subscriber's home network

Home domain name

- The ISIM application stores the home domain name of the subscriber securely.
- This can not be changed or modified.

IMPIs, IMPUs, and Service Profiles

- In case of more than one IMS subscription, there may be a many-to-many mapping of IMPIs to IMPUs.
- Each IMPU is assigned exactly one Service Profile, but a Service Profile may be assigned to more than one IMPU.

Smartcards and Related Application Infrastructures

- Smartcards Introduction
- Subscriber Identity Module (SIM)
- WAP Identity Module (WIM)
- Universal SIM (USIM) and UICC
- IP Multimedia Services Identity Module (ISIM)
- Applications CamWebSIM

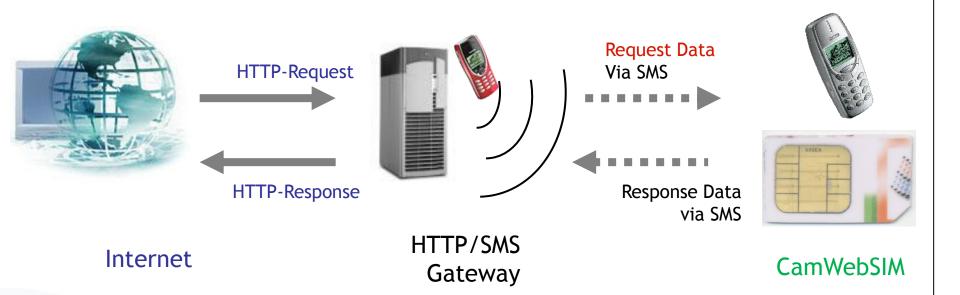
A smaller personal security device

HTTP server (!) in the GSM SIM card

A SIM based on the MS Smart Card can be programmed

Connection between GSM and Internet

HTTP Requests via HTTP/SMS Gateway to mobile phone


More than a cool demo ...

- Explore the relation between PDAs and Smart Cards
 - What can really be done on the Smart Card?
 - Can Smart Card encrypt info to be stored in the PDA?
- Explore the possibilities of extra interaction channels
 - SMS in parallel to Internet
- Research Authorisation vs. Authentication vs. Identification

CamWebSIM Combine Infrastructures

http://www.camwebsim.telco.com/+14253334711/dt=(Hello World)

SIM Addressing via HTTP

- Website
 - http://www.camwebsim.telco.com/
- Tel-No.
 - **+**14253334711/
- Command (SIM AT V 2.0 ++)
 - dt=(Hello World!)
 - LOCATION INFO info
 - SELECT ITEM si=(title,item1,item2,...)
 - DISPLAY TEXT dt=(text)
 - GET INPUT gi=(text)
 - MAIL NOTIFICATION mail=(who, subj, phone)
 - SIGN CHEQUE cq=(who, amount)

Website

Tel.-No.

Command

SIM based Payment Authorisation

.com.

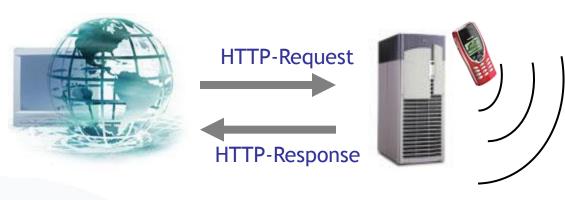
ITEMS

ADDRESS

More Payment Channels

Telephone Bill

WELCOME


• ...

Toys.com
3 Gimmicks
▶ Pay \$ 27.80
Cancel
Help

Payment Authorisation live:

CamWebSIM

Internet

HTTP/SMS Gateway

www.camwebsim.telco.com/+14253334711/ si=(Toys.com 3 Gimmicks, Pay 27.80, Cancel, Help)

What have we done in this example?

Technologywise

- Connected a smart card to the Internet
 Goal: transparent, uniform access to smart card services
- Used the mobile phone as a trusted device
 Assumed a secure path between SIM and display/keyboard
 ! This might be (more) dangerous with more complex phones
- Used the existing GSM infrastructure and security model for payment authorisation
 User authentication key is stored in the SIM

•

What have we done in this example?

Applicationwise

- •
- Used the existing GSM infrastructure and security model for payment authorisation
 User authentication key is stored in the SIM
- Provided a telecom with a new revenue channel based on an existing process
 Telecoms as payment servers (the Teletext model)
- Enabled cash-like payment for Internet services
 In countries where one does not need to register a name with a prepaid
 GSM account

Technical Details and Issues (in 2001)

ATMEL 3232/ ... 8 bit CPU 5 MHz, 32K Flash, 32K EEPROM, 1K RAM 9600 Bit/s serial I/O

Sagem Smart Card

SMS limits

- No guaranteed delivery times
- 140 "real" Bytes just cover a 128
 Bytes signed message ...
- ... and sometimes not even that
- We look forward to GPRS.

Space limits

 More than 32K in the chip would be helpful.

Phone capability limits

 SIM Application Toolkit Support is being interpreted widely ...

SIM Addressing via HTTP indication application areas

- Website
 - http://www.camwebsim.telco.com/
- Tel-No.
 - **+**14253334711/
- Command (SIM AT V 2.0 ++)
 - dt=(Hello World!)
 - LOCATION INFO info
 - SELECT ITEM si=(title,item1,item2,...)
 - DISPLAY TEXT dt=(text)
 - GET INPUT gi=(text)
 - MAIL NOTIFICATION mail=(who, subj, phone)
 - SIGN CHEQUE cq=(who, amount)

Website

Tel.-No.

Command

Literature

- [3GPP2013] 3GPP (2013), www.3gpp.org/ftp/Specs/html-info/31103.htm, accessed 2013-10-03
- [DTAG2014] Deutsche Telekom: SIM-Kartenformate, www.t-mobile.de/sim-kartenformate/0,27115,28905-_,00.html, accessed 2014-11-05.
- [EffingRankl2008] Effing, Wolfgang and Rankl, Wolfgang (2008) Handbuch der Chipkarten: Aufbau Funktionsweise Einsatz von Smart cards, Hanser-Verlag
- [GSM2006] GSM Specification, www.3gpp.org/ftp/Specs/archive, accessed 2013-10-03
- [GSM2013] GSM Association (2014), GSM Technology, www.gsma.com/aboutus/gsm-technology/gsm, accessed 2014-09-03
- [GSMAI2014] GSMA Intelligence, http://gsmaintelligence.com, accessed 2014-09-03.
- [ITU2014] International Telecommunication Union, www.itu.int/en/ITU-D/Statistics/Documents/facts/ ICTFactsFigures2014-e.pdf, accessed 2014-09-03
- [McDonalds2013] McDonald's Corporation (2013),
 www.aboutmcdonalds.com/mcd/our_company.html, accessed 2013-10-10

Literature

- [SecCommerce2013] SecCommerce (2013), Überblick über Smartcards, www.seccommerce.de/de/component/content/article/39-rootde/knowledge/technology/122-smartcard-architecture.html, accessed 2013-10-10
- [UN2013] United Nations (2013), www.un.org/en/members/index.shtml, accessed 2013-10-10
- [Wiki2014] Subscriber identity module, en.wikipedia.org/wiki/Subscriber_identity_module#Formats, accessed 2014-11-06