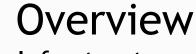


Lecture 2


Basic Communication Paradigms and Mobile Telecommunications Infrastructures

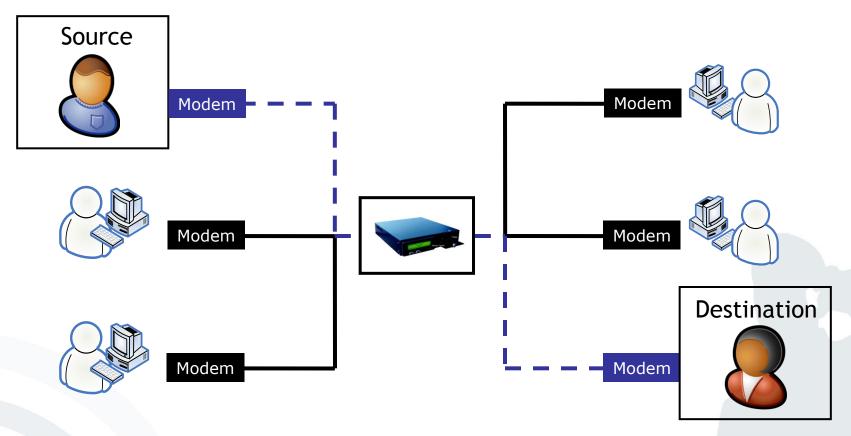
Mobile Business I (WS 2014/15)

Prof. Dr. Kai Rannenberg

Deutsche Telekom Chair of Mobile Business & Multilateral Security Johann Wolfgang Goethe University Frankfurt a. M.

Mobile Telecommunication Infrastructures

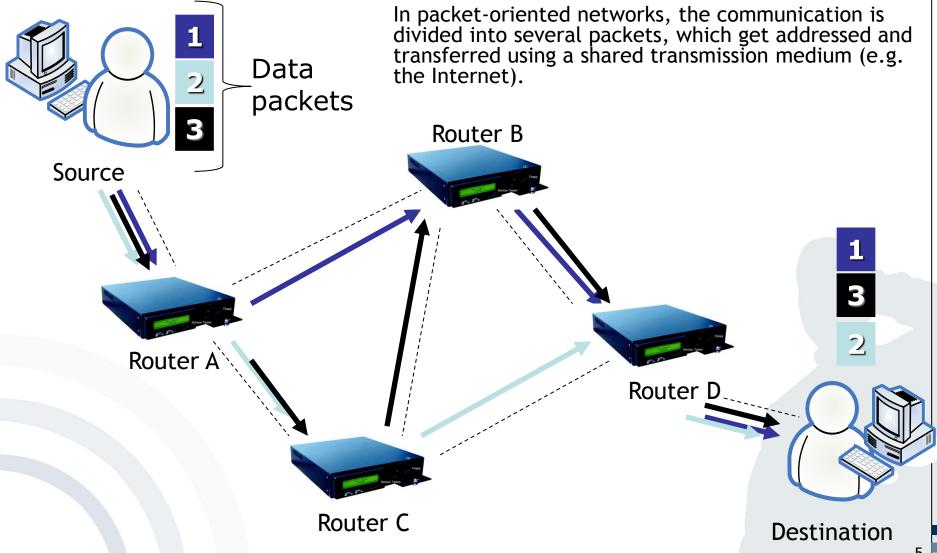
- Transmission Paradigms
- Cell Based Communication (CBC)
 - Introduction
 - Basic Technology (Cells, Multiplexing)
- Mobile Telecommunication Infrastructures
 - Introduction
 - GSM (Technology, Authentication, Location Management) (2G)
 - UMTS (3G)
 - Long Term Evolution (3.9G, 4G)
- Roaming


Mobile Data Services Data Transmission Paradigms

There are two major paradigms for data transmission in communication networks:

- *Circuit-Switched*: In circuit-switched networks, the communication line is used exclusively for the communicating parties.
 - Connections are **exclusive** ⇒ even if no data is transferred, the network resources are used.
 - In reality, the typical usage for voice connections is 30% of the network's capacity for data transmission it is less than 10%.
 - The duration of a connection is used for billing purposes
 - Example: Circuit Switched Data (CSD) and High-Speed Circuit Switched Data (HSCSD) for Mobile Data Services
- Packet-Oriented: In packet-oriented networks, the communication is divided into several packets, which get addressed and transferred using a shared transmission medium.
 - The connection is kept all the time (always on). However, the network is only used when data is transmitted.
 - The capacity of the communication network is allocated dynamically.
 - For billing purposes, the amount of transferred data is used.
 - Example: GPRS for Mobile Data Services

Mobile Data Services Circuit-Switched Networks



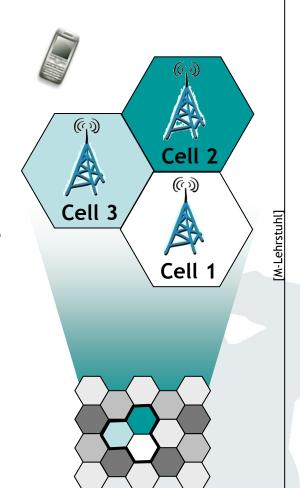
In circuit-switched networks, the communication line is used exclusively for the communicating parties (similar to the phone system, CSD and HSCSD).

[M-Chair]

Mobile Data Services Packet-Oriented Networks

[M-Chair]

Mobile Telecommunication Infrastructures


- Transmission Paradigms
- Cell Based Communication (CBC)
 - Introduction
 - Basic Technology (Cells, Multiplexing)
- Mobile Telecommunication Infrastructures
 - Introduction
 - GSM (Technology, Authentication, Location Management) (2G)
 - UMTS (3G)
 - Long Term Evolution (3.9G, 4G)
- Roaming

Cell Based Communication (CBC)

What is a Cellular Network?

- Cellular networks are radio networks consisting of several transmitters.
- Each transmitter or base station, covers a certain area
 a cell.
- Cell radii can vary from tens of meters to several kilometres.
- The shape of a cell is influenced by the environment (buildings, etc) and usually neither hexagonal nor a perfect circle, even though this is the usual way of drawing them.

Cell Based Communication (CBC)

Advantages of CBC (1)

- Cellular networks offer a number of advantages compared to centralised radio systems:
 - Higher capacity: Cells offer the possibility to "reuse" the transmission frequencies assigned to mobile devices (e.g. by multiplexing). In order to do so, the networks need a thorough planning of the position of base stations and their frequencies.
 - → More users can use the infrastructure
 - Reduced transmission power: Reduced power usage for the mobile device, due to the fact that only a limited amount of transmission power is needed in a small cell, compared to a far away base station.
 - ⇒ Reduced power consumption for mobile devices

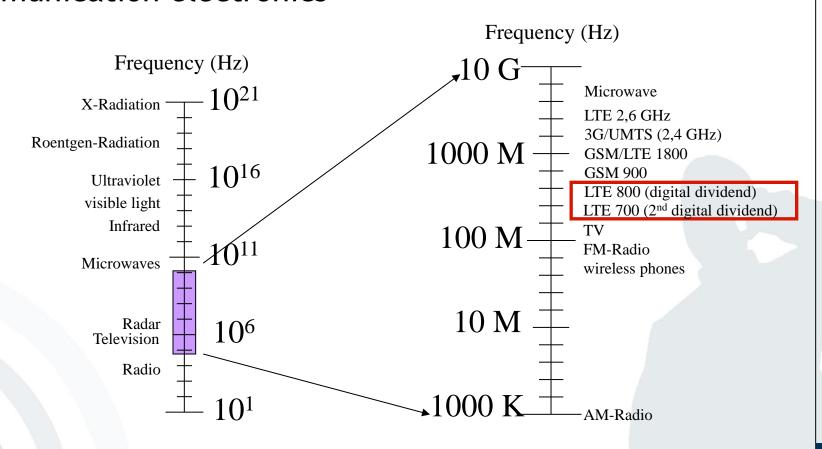
Cell Based Communication (CBC)

Advantages of CBC (2)

- Cellular networks offer a number of advantages compared to centralised radio systems:
 - Robustness: Cellular systems are decentralised with regard to their base stations. In the case that one antenna fails, only a small area gets affected.
 - ⇒ Failure of one base station does not affect the complete infrastructure
 - Better coverage: Cells can be adapted to geographic conditions (mountains, buildings, etc.).
 - Better availability of the infrastructure

mobile Cell Based Communication (CBC) Disadvantages of CBC

- However, there are also some drawbacks of cell based communication infrastructures:
 - Required infrastructure: A complex and costly infrastructure is required, in order to link all base stations. This includes switches, antennas, location registers, etc.
 - Handover needed: When changing from one cell to another, a handover mechanism is needed that allows a change of cells in real-time. These mechanisms are complex.
 - Frequency planning: The distribution of the frequencies being used for the base stations needs to be planned carefully, in order to minimise interferences, etc.


Cell Based Communication (CBC) Multiplexing

- Fundamental mechanism in communication system
- Describes how several users can share a medium (e.g. mobile network) with minimum or no interference.
- Goal: Most efficient usage of a medium
- Abstract example: Traffic (users) using a highway with several lanes (medium) without accidents (interference)

mobile Cell Based Communication (CBC) Spectrum Ranges

Frequency range of instruments of entertainment and communication electronics

Overview

Mobile Telecommunication Infrastructures

- Transmission Paradigms
- Cell Based Communication (CBC)
 - Introduction
 - Basic Technology (Cells, Multiplexing)
- Mobile Telecommunication Infrastructures
 - Introduction
 - GSM (Technology, Authentication, Location Management) (2G)
 - UMTS (3G)
 - Long Term Evolution (3.9G, 4G)
- Roaming

Mobile Telecommunication Infrastructures

- 1st Generation (1G) Analogue networks
- 2nd Generation (2G) GSM networks
 Global System for Mobile Communications
- 3rd Generation (3G/3.5G) UMTS/HSPA/HSPA+
 Universal Mobile Telecommunications System
 High Speed Packet Access / Evolved HSPA = HSPA+
- 3.9G or 4G LTE
 Long Term Evolution
- 4th Generation (4G) LTE Advanced

Evolution of mobile telecommunication infrastructures

2G - GSM

3.9G/4G - LTE

3G - UMTS

4G – LTE Advanced

Mobile Telecommunication Infrastructures – History

- 1st mobile radio network in Germany: "A-Netz"
 - Started in 1958 decommissioned in 1977
 - Analogue network (Manual switching of calls, frequency range 150 MHz)
 - Price of terminal: 8.000-15.000 DM
 - For a call, the caller has to know the location of the callee (range from 30 to 50 km radius).
- 2nd mobile radio network in Germany: "B-Netz"
 - Started in 1972 decommissioned in 1994
 - Analogue network (Automatic dial switching by area code)
 - Caller needs to know the area code of callee
 - Terminal prices comparable with those of the A-Network

Mobile Telecommunication Infrastructures – History

- 3rd mobile radio network in Germany: "C-Netz"
 - Started in 1985 decommissioned in 2000
 - Analogue network
 - First cell based mobile radio system in Germany
 - The change of cells happens automatically by distance measuring to the nearest base station
 - The net can automatically detect the place of the call partner by use of a Home Location Register (HLR)
 - Uniform (location independent) area code "0161" for all participants
 - Telephone number is not allocated to the terminal but to the smart card (later: SIM)
 - Peak in 1993 with 850.000 participants

Mobile Telecommunication Infrastructures 1990-2008

- In 1991, the first GSM (2G) network ("D-Netze") started in a test run in Germany.
- By introducing the worldwide GSM-standards and roaming agreements among mobile operators cross-border mobile communication became possible.
- In 2003 the first UMTS (3G) networks became available.

- First digital mobile radio network with high voice quality and reliability (roaming)
- Global diffusion in more than 212 countries with more than 1 billion users.
- In February 2004 the first commercial mobile radio network (based on GSM) was launched in Iraq.
- GSM is the basis of data services like GPRS and EGDE.

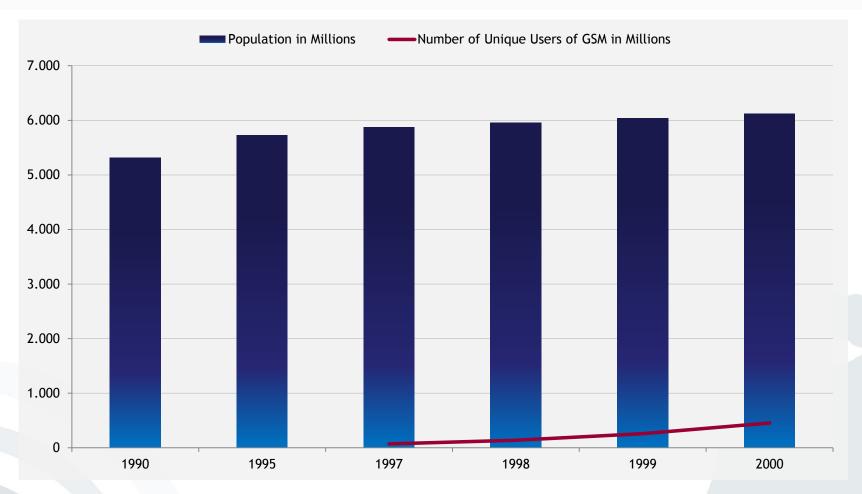
[Sauter2008]

UMTS

- Third-generation (3G) mobile phone technology
- Provides high data transfer rates for multimedia communication services
- Germany's UMTS frequency licenses were sold by auction in 2000 for approx. 50bn €.
- Commercially available in Germany since 2004
- UMTS/3G is the underlying network and the basis of the data services HSPA and HSPA+.

Mobile Telecommunication from 2009

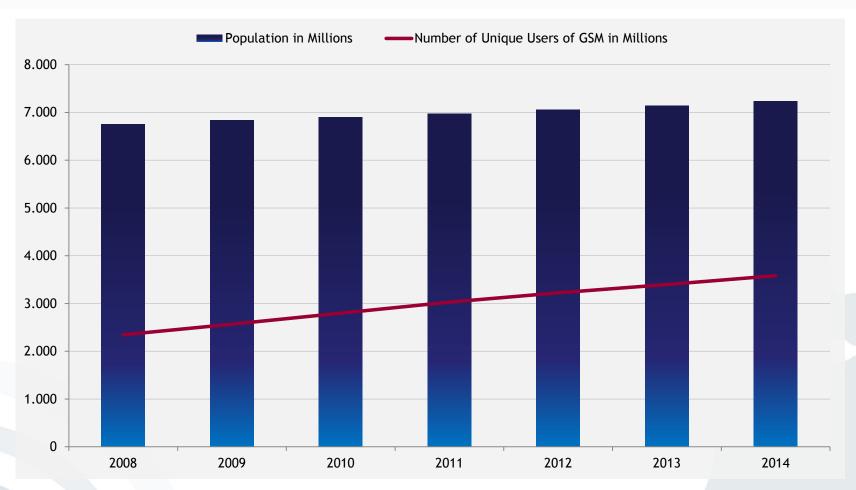
2009-12-14:


 First Long Term Evolution Networks (3.9G/4G) became commercially available in Stockholm and Oslo.

April and May 2010:

- the digital dividend frequency spectrum auctioned in Germany (4.4 bn €) for
 - use in Long Term Evolution Networks (3.9G/4G)
 - improving broadband coverage

Unique users of GSM 1990-2000


Worldwide mobile communication business penetration 1997-2007 by technology*

	GSM	UMTS (WCDMA)	CDMA	PDC	TDMA
1997	71,20				
1998	138,40				
1999	258,20				
2000	455,10		82,20	50,80	65,20
2001	636,40		110,00	52,90	90,00
2002	809,30	0,20	140,50	56,10	101,10
2003	1.012,00	2,80	183,60	58,10	100,10
2004	1.296,00	16,30	231,60	54,20	90,00
2005	1.709,20	50,00	296,70	46,30	48,50
2006	1.941,60	74,70	296,50	38,50	26,10
2007	2.278,10	114,70	290,00	27,90	16,20

^{*} In Million subscribers [Source: Chair of Mobile Business 2007]

Unique users of GSM Recent development

Overview

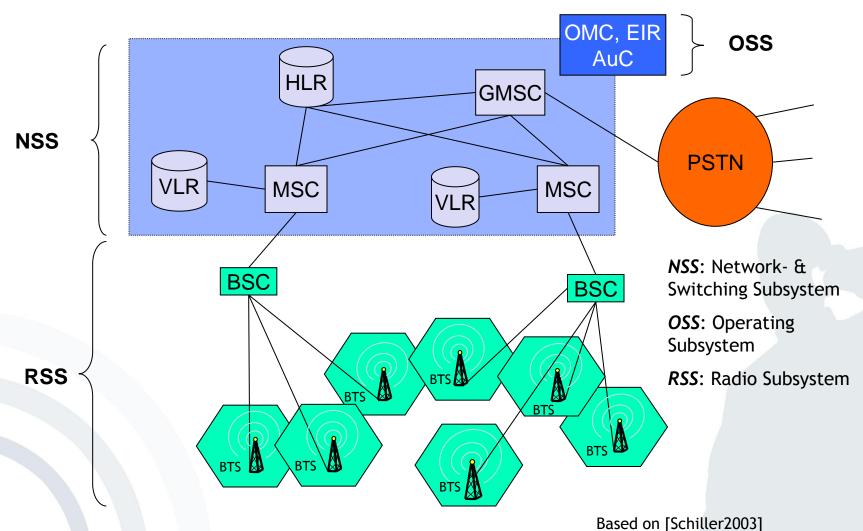
Mobile Telecommunication Infrastructures

- Transmission Paradigms
- Cell Based Communication (CBC)
 - Introduction
 - Basic Technology (Cells, Multiplexing)
- Mobile Telecommunication Infrastructures
 - Introduction
 - GSM (Technology, Authentication, Location Management) (2G)
 - UMTS (3G)
 - Long Term Evolution (3.9G, 4G)
- Roaming

GSM (2G)
Overview

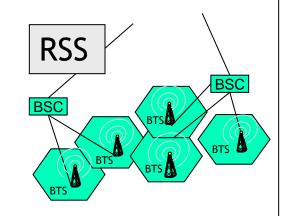
Abbreviation for Global System for Mobile Communications (GSM)

- Originally 1982 driven by "Groupe Spéciale Mobile" in order to create a cross national standard contrary to national analogue standards
- European standard by ETSI (European Telecommunications
 Standardisation Institute). ETSI is a partner in the 3rd Generation
 Partnership Project (3GPP).
- Worldwide adoption of the standard in more than 212 countries and territories (most successful mobile radio system up to now)
- Thus, worldwide roaming among different mobile network operators became possible.

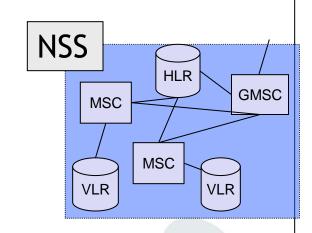


GSM-Services

- Carrier services
 - Services to transfer signals over the GSM network
 - →The focus of GSM standardization was on voice services
- Telecommunications services
 - Telecommunication services (mainly voice) support the mobile communications among users
 - →Telecommunication services play a central role in the GSM standard
- Supplementary services
 - GSM provides a number of supplementary services (specific to network operators), such as caller ID, call redirect, closed user groups (e.g. company-internal network or GSM-R), Teleconference (up to 7 participants).


GSM (2G) System Architecture

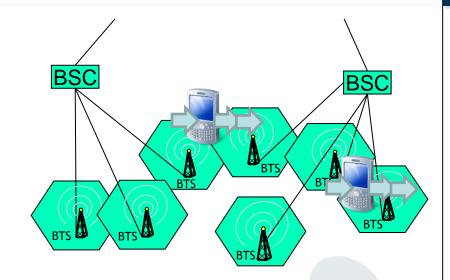
- Radio Subsystem (RSS)
 - System consisting of radio
 - Specific components
- Components:
 - Mobile Station (MS): System of mobile terminal & SIM
 - Base Transceiver Station (BTS): Radio facility for signal transfer. A BTS serves one GSM cell (~100m to ~30km radius).
 - Base Station Controller (BSC): Administrates affiliated BTS and supervises e.g. frequency allocation and connection handover between cells.



Network & Switching Subsystem (NSS)

- Connects radio network with conventional networks
- Locates subscribers and monitors change of location

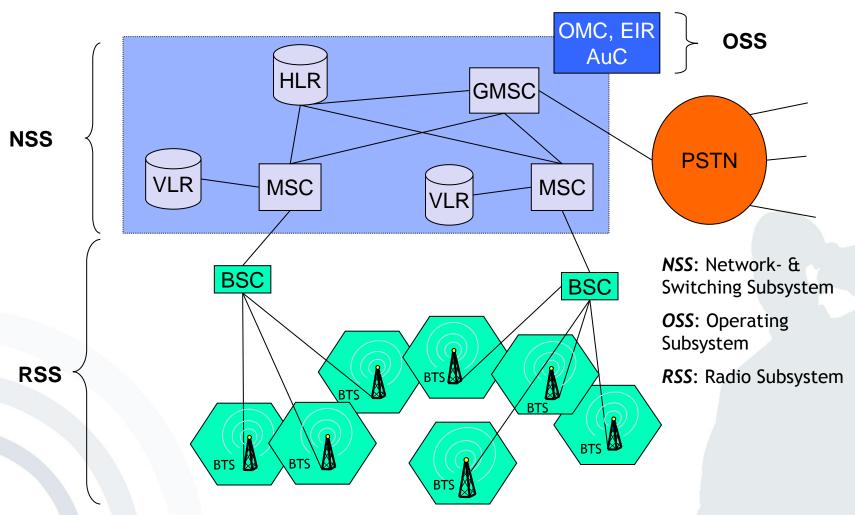
Components:


- Mobile Switching Centre (MSC): Switching centre for initiation, termination and handover of connections
- Home Location Register (HLR): Central data base with subscribers' data (telephone numbers, keys, locations)
- Visitor Location Register (VLR): Data base assigned to every MSC with data of active subscribers in the MSC's range (HLR fraction copy).

GSM (2G)

System Architecture - Handover

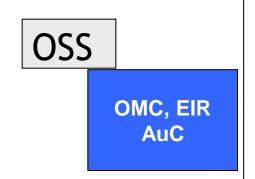
 Transferal of calls or data sessions from one transmitting station (in GSM: Base Transceiver Station, BTS) to another.



- Term handover common in British English
 - In international and Europe based organisations,
 e.g. ITU-T, IETF, ETSI and 3GPP
- Equivalent term handoff in American English
 - In IEEE and ANSI publications

GSM (2G)

System Architecture - Handover



Operation Subsystem (OSS)

 Supervises operation and maintenance of the whole GSM network

Components:

- Operation and Maintenance Centre (OMC): Supervises each network component and creates status reports
- Authentication Centre (AuC): protects identity of participants
 & data transmission, administrates keys
- Equipment Identity Register (EIR): data base with identification list for devices, e.g. stolen terminals (whitelist, greylist, blacklist)

The GSM system offers different "security services":

Access control and authentication:

 Authentication of the subscriber to the SIM by input of a PIN and to the GSM network by Challenge-Response-Procedure

Confidentiality:

 Data & voice transferred between mobile station and BTS are encrypted.

(Partial) Anonymity:

- No transfer of data which can identify the subscriber via radio, instead temporary identification
- (Temporary Mobile Subscriber ID, TMSI)

GSM (2G)

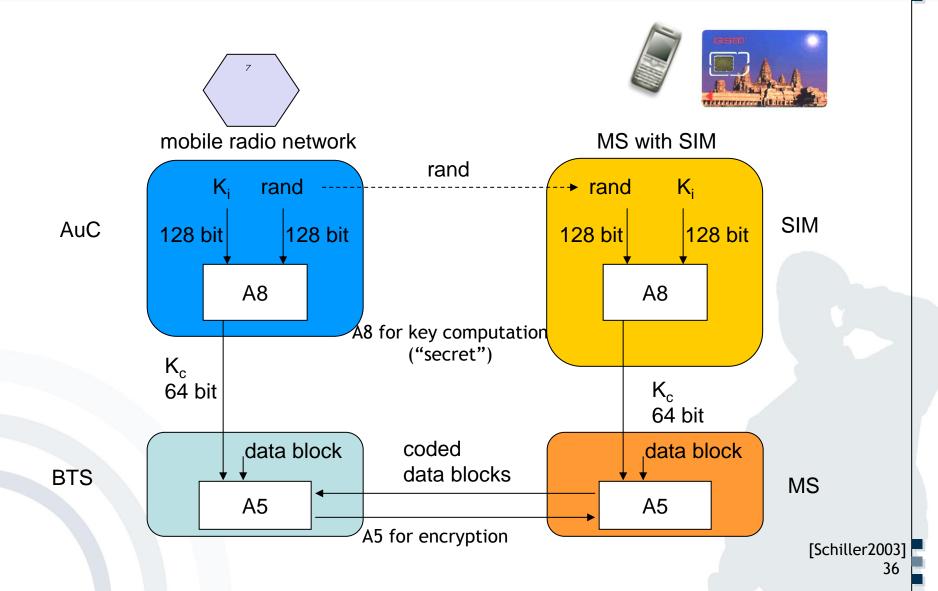
SIM based subscriber authentication

Challenge response protocol

K_i: individual subscriber authentication key

A3: ("secret") authentication algorithm

SRes: signed response



- Challenge-Response-Procedure (Subscriber Authentication)
 Authentication is based on the individual key K_i, the subscriber identification IMSI and a secret algorithm A3.
- K_i and A3 are stored on the SIM and deposited in the AuC.
 - AuC creates random number rand.
 - 2. AuC encrypts rand and K_i via A3 (->SRes*).
 - 3. AuC transfers rand and SRes* to VLR.
 - 4. VLR transfers exclusively *rand* to SIM.
 - 5. SIM computes with "own" K_i and A3 Signed Response SRes.
 - 6. The SRES computed by the SIM is transmitted to the VLR and is compared with SRES*.
 - 7. If SRES* and SRES are equal the subscriber is authenticated successfully.

GSM (2G) Security Model – Encryption

GSM provides encryption of voice and data transferred via the air interface:

- 1. AuC creates random number rand.
- 2. AuC generates the key K_c for the encryption of the transferred data via rand, K_i and A8.
- 3. VLR transfers only rand to SIM.
- 4. SIM computes the key K_c using A8, the rand received and the local K_i
- 5. Mobile station and mobile radio network use generated K_c and algorithm A5 for encryption and decryption of sent and received data.

Partial Anonymity:

- In order to guarantee the anonymity of the users temporary user identification (TMSI) is used.
- Temporary user identification is updated automatically from time to time or on demand.
- Data which identify users are not transferred.
- Example: Anonymous charging is (technically) possible via prepaid card.

Security Model - Shortcomings

- Solely authentication of the terminal/subscriber toward the GSM network. The network does not authenticate itself.
 - Assumption that the network is trustworthy per se
 - Security model was developed at a time with a provider monopoly
- Subscriber localization is almost exclusively controlled by the network.
 - Centralized movement tracking is possible
 - In order to avoid localization the subscriber must switch off the terminal.

- Security model bases partly on secret encryption algorithms.
 - A3 and A8 were published without authorization.
 - Some operators use non-standardized algorithms.
- No encryption from terminal to terminal but solely over the air interface
 - Encryption deactivation by the network possible, without notification of the users
- Encryption comparatively "weak" because of key length (64 bit)
 - Sometimes the real key length is shorter.

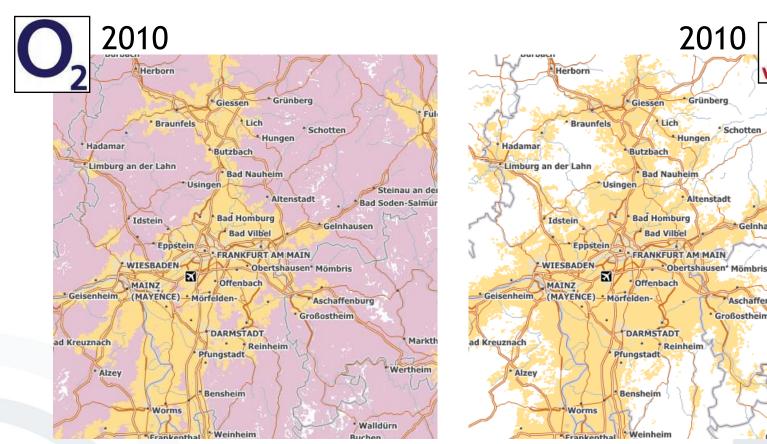
Overview

Mobile Telecommunication Infrastructures

- Transmission Paradigms
- Cell Based Communication (CBC)
 - Introduction
 - Basic Technology (Cells, Multiplexing)
- Mobile Telecommunication Infrastructures
 - Introduction
 - GSM (Technology, Authentication, Location Management) (2G)
 - UMTS (3G)
 - Long Term Evolution (3.9G, 4G)
- Roaming

- Universal Mobile Telecommunications System (UMTS):
 - Status of 2G-Networks: Different standards in some different continents avoid worldwide roaming
 - Demand for 3G-Networks: Globally uniform standard
- ⇒ Voting of regional & national regulation offices (e.g. ETSI, ARIB, ANSI) via the International Telecommunication Union (ITU)

UMTS (3G)


Schotten

Gelnhausen

Aschaffenburg

Großostheim

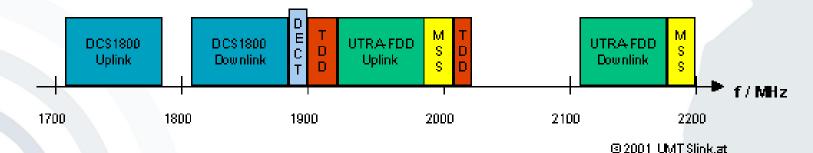
3G network coverage in Germany in 2010

 3G coverage of Vodafone and Telefónica O₂ 2010-2013: Roughly unchanged.

[GSM2010]

Markth

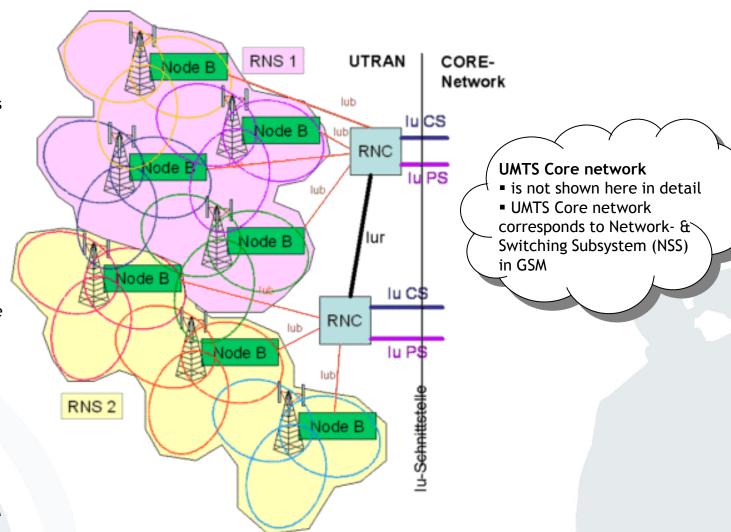
Wertheim


Walldürn

Bad Soden-Salmür

UMTS (3G) Frequencies

- Common approach:
 Worldwide reservation of frequencies in the 2GHz range
- Problem of competing targets:
 - Existing national networks and installed network technique shall preferably be transferred into the new standard.
 - ⇒ The specification of 3G-Networks, introduced by the ITU, leaves room for national, partly incompatible implementations.
- UMTS (UTRA-FDD/TDD) frequency allocation in Europe:


UTRA-FDD: UMTS Terrestrial Radio Access - Frequency Division Duplex

[UMTSLink2006]

UMTS (3G) System Architecture

- **UTRAN: UMTS** Terrestrial Radio Access Network
- RNS: Radio Network Subsystem
- RNC: Radio Network Controller (controls the Node Bs)
- Node B: **UMTS** base stations (equivalent to base transceiver stations (BTS) in GSM

- 3G UMTS/HSPA/HSPA+ bandwidths
 - UMTS: 384 kbit/s downlink/uplink
 - High Speed Packet Access (HSPA) provides higher data speeds for downlink and uplink, e.g.
 - 7.2 or 14.0 Mbit/s downlink speed (HSDPA)
 - 1.4 or 5.7 Mbit/s uplink speed (HSUPA).
 - Evolved HSPA (HSPA+) using either Multiple Input Multiple
 Output (MIMO) or Dual-Cell technology provides
 - downlink speeds of e.g. 21,1 or 42,2 Mbit/s and
 - a maximum uplink speed of 11.5 Mbit/s.
- But: Available bandwidth per user decreases if terminal is moving or if there are many participants in one radio cell.
 - ⇒ Bandwidths enable multimedia services

- UMTS complements the security mechanisms known by GSM:
 - Enhanced participant authentication (EMSI)
 - Network authentication
 - Integrity protection of data traffic
 - Transferred security keys are also encrypted in the fixed network (e.g. HLR-VLR)
 - Increased key length
 - End-to-End encryption is possible.

- The UMTS standard includes the following features:
 - Quality of Service (QoS) for data services
 - Multilateral Security (with regard to authentication)
 - Virtual Home Environment (VHE)
 - High Speed Downlink Packet Access (HSDPA)
 - **-** ...
- However, not all of these features that have been standardised are actually implemented in existing networks, as they are optional and can be added on demand.

Overview

Mobile Telecommunication Infrastructures

- Transmission Paradigms
- Cell Based Communication (CBC)
 - Introduction
 - Basic Technology (Cells, Multiplexing)
- Mobile Telecommunication Infrastructures
 - Introduction
 - GSM (Technology, Authentication, Location Management) (2G)
 - UMTS (3G)
 - Long Term Evolution (3.9G, 4G)
- Roaming

Long Term Evolution Long Term Evolution (3.9G, 4G)

- Long Term Evolution (3.9G, "4G") standard allows for 300 Mbit/s downlink and 75 Mbit/s uplink speeds
 - First commercial LTE network launched in Scandinavia in December 2009
 - LTE was originally not named a "4G network" due to stricter naming requirements *)
 - The technology can be named either 3.9G or 4G network today.
- LTE Advanced (4G) makes use of the frequency spectrum more efficiently, resulting in higher data rates (towards 1 Gbit/s) and lower latency. It remains backward compatible with LTE, uses same frequency bands.

Long Term Evolution: User Equipment Categories

LTE Speeds

- 3GPP Release 8 User Equipment Category 3: 100 Mbit/s downlink and 50 Mbit/s uplink.
- 3GPP Release 8 User Equipment Category 4: 150 Mbit/s downlink and 50 Mbit/s uplink.
- 3GPP Release 8 User Equipment Category 5: 300 Mbit/s downlink and 75 Mbit/s uplink.

LTE Advanced Speeds

- 3GPP Release 10 User Equipment Category 6: 300 Mbit/s downlink and 50 Mbit/s uplink.
- 3GPP Release 10 User Equipment Category 7: 300 Mbit/s downlink and 150 Mbit/s uplink.
- 3GPP Release 10 User Equipment Category 8: 1200 Mbit/s downlink and 600 Mbit/s uplink.

Long Term Evolution Telephony?

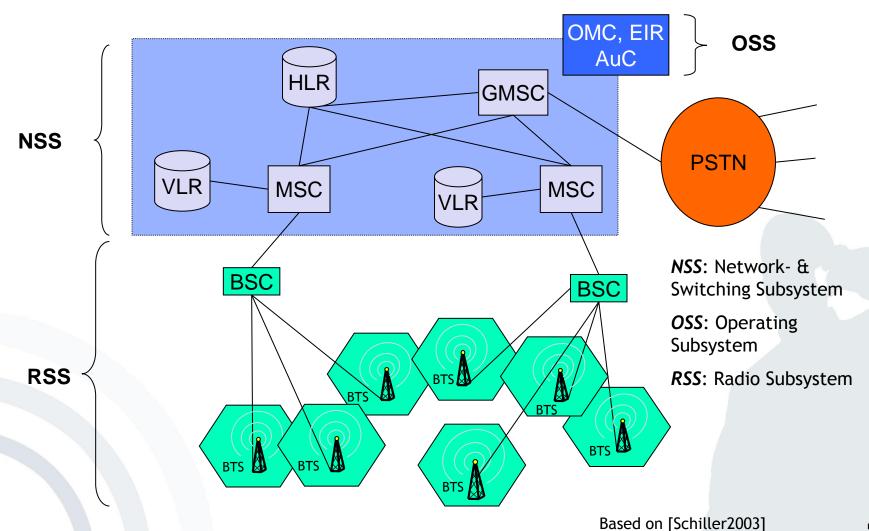
- LTE networks are IP-based systems (all-IP networks)
 - Voice calls in GSM and 3G (UMTS) are circuit-switched.
 - Only packet-switched communication is supported in LTE networks - no circuit-switched connections/calls/telephony!

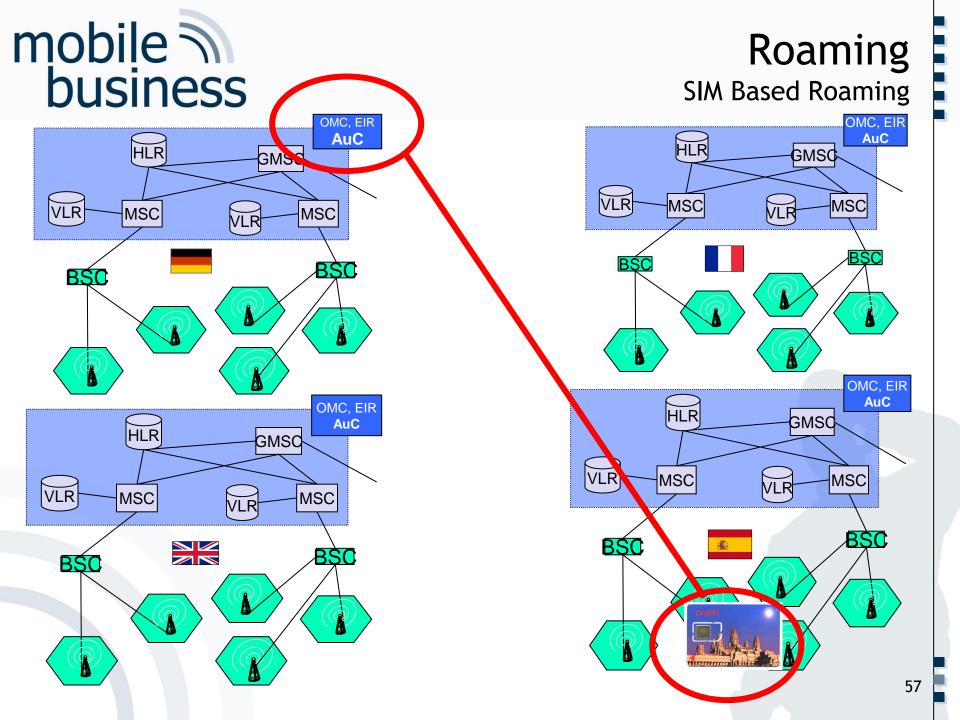
- Three different approaches to provide telephony services in Long Term Evolution networks:
 - CSFB (Circuit Switched Fallback)
 - VolTE (Voice Over LTE) based on the IP Multimedia Subsystem (IMS) network.
 - SVLTE (Simultaneous Voice and LTE, handset-based approach)

Overview

Mobile Telecommunication Infrastructures

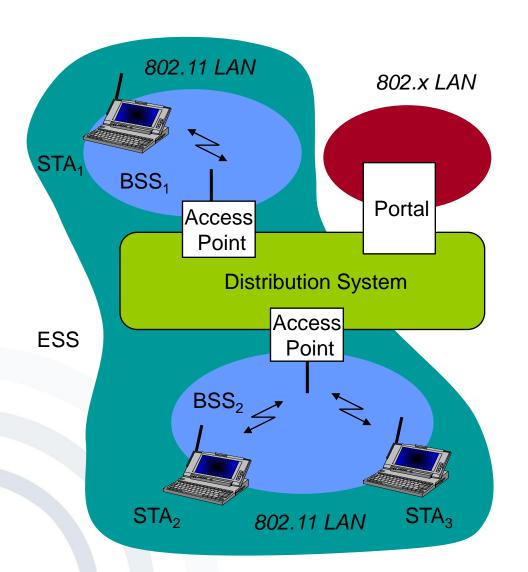
- Transmission Paradigms
- Cell Based Communication (CBC)
 - Introduction
 - Basic Technology (Cells, Multiplexing)
- Mobile Telecommunication Infrastructures
 - Introduction
 - GSM (Technology, Authentication, Location Management) (2G)
 - UMTS (3G)
 - Long Term Evolution (3.9G, 4G)
- Roaming


- Roaming denotes a change of network access, e.g.:
 - Change of the GSM network operator
 - Change between different network systems (UMTS, GSM, WLAN, CDMA, PDC)
 - Cell change within the GSM system (Handover)
- Roaming usually means extensive changes, e.g.
 of the network technique or the network
 operator, and with a new authentication:
 - Example: The mobile device automatically logs into an available WLAN when a hotspot is entered (e.g. airport, conferences).



- If a user of a mobile device moves from one cell to another cell, the connection handover should be as smooth as possible.
- GSM manages the handover between radio cells in the range of 100 ms; this implies a short connection interruption.
- The reason for the interruption is, among others, an update of the VLR.

Roaming GSM System Architecture


mobile nobile susiness Roaming **SIM Based Roaming** OMC, EIR **AuC** OMC, EIR GMSC AuC HLR GMSC MSC MSC MSC MSC BSC BŚC orange OMC, EIR OMC, EIR **AuC AuC** HLR HLR GMSC GMSC **VLR** MSC **VLR** MSC MSC MSC Telefonica BSC BŚC BSC vodafone' 58

- No existing standard for "roaming" between:
 - Access points (AP)
 - Different providers of APs
- Change of AP leads to
 - Connection interrupt
 - New connection/authentication
- Non-uniform accounting / user administration
- → Some of the reasons why WLAN will not replace mobile communication networks

Roaming WLAN Roaming

Station (STA)

 Computer with access to the wireless medium and therefore contact to the AP

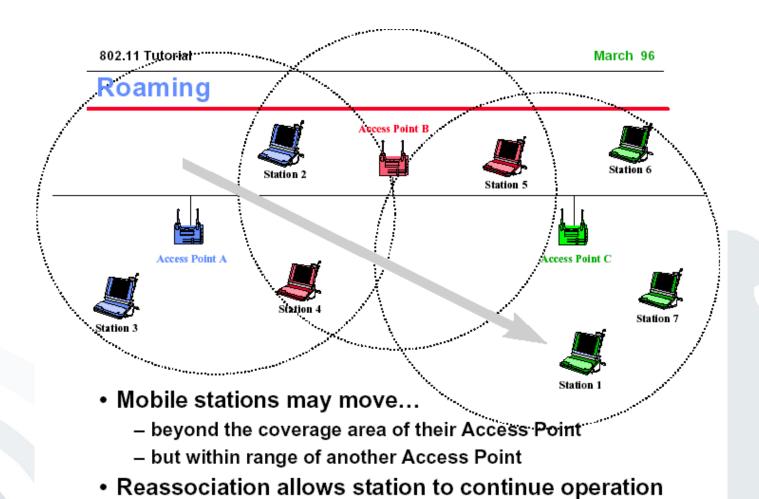
Basic Service Set (BSS)

 Group of stations, which use the same radio frequency

Access Point (AP)

 Station which is integrated into the radio as well as the fixed local area network (distribution system)

Portal


 Transfer into another network

Distribution systems

 Connection of different cells for building up a larger network (EES: Extended Service Set)

Roaming WLAN Roaming

- By connecting multiple access points via a so called distribution-system, the transmission range could be expanded.
- Each access point provides one cell.
- A station scans for available access points and tries to log on when leaving a cell.
- Distribution system and "former" access point get information after successful log in.

mobile no business

Literature

- [BITKOM2005] BITKOM (2005), UMTS Subscribers 2005, www.bitkom.org/de/markt_statistik/38511_38543.aspx, accessed 2006-10-13.
- [GSM2010] GSM Association (2010), GSM Coverage Maps, http://www.mobileworldlive.com/coverage.asp, accessed 2010-10-10.
- [GSMA2014] GSM Association (2014), www.gsmamobileeconomy.com, accessed 2014-10-01.
- [Heise2014] Heise online: Digitale Dividende, http://www.heise.de/thema/Digitale-Dividende, accessed 2014-09-03.
- [Parkvall2008] Parkvall, S.; Dahlman, E.; Furuskär, A. LTE Advanced Evolving LTE towards IMT-Advanced (PDF). Vehicular Technology Conference Fall 2008, http://www.ericsson.com/res/thecompany/docs/journal_conference_papers/wireless_access/VTC08F_jading.pdf, accessed 2013-10-14.
- [Royer2006] Royer, D. (ed.) (2006): FIDIS Deliverable D11.1, available online at http://www.fidis.net/resources/deliverables/mobility-and-identity/int-d111000/
- [Sauter2008] Sauter, M. (2008): Grundkurs Mobile Kommunikationssysteme (3., erweiterte Auflage), Vieweg, Wiesbaden.
- [Schiller2003] Schiller, J. (2003): Mobile Communications, Addison Wesley, London, England.

Literature

- [Statista2013] Weltbevölkerung Statista-Dossier 2013, de.statista.com/statistik/studie/id/12358/dokument/weltbevoelkerung-statista-dossier/, accessed 2014-10-01.
- [Statista2014] Entwicklung der Weltbevölkerung von 1950 bis 2010 (in Milliarden), United Nations (Department of Economic and Social Affairs, Population Division) (2014), de.statista.com/statistik/daten/studie/1716/umfrage/entwicklung-der-weltbevoelkerung/, accessed 2014-10-01.
- [StiftWelt2013] Datenreport 2013 der Stiftung Weltbevölkerung Soziale und demographische Daten weltweit (2013), www.weltbevoelkerung.de/fileadmin/content/PDF/Datenreport_2013_Stiftung_Wel tbevoelkerung.pdf, accessed 2014-10-01.
- [StiftWelt2014] Datenreport 2014 der Stiftung Weltbevölkerung Soziale und demographische Daten weltweit (2014), www.weltbevoelkerung.de/fileadmin/content/PDF/Datenreport_2014_Stiftung_Wel tbevoelkerung.pdf, accessed 2014-10-01.
- [UMTSLink2013] UMTSlink, www.umtslink.at, accessed 2013-10-11.