

Practical Exercise 3

Technology II

Mobile Business I (WS 2014/15)

Prof. Dr. Kai Rannenberg

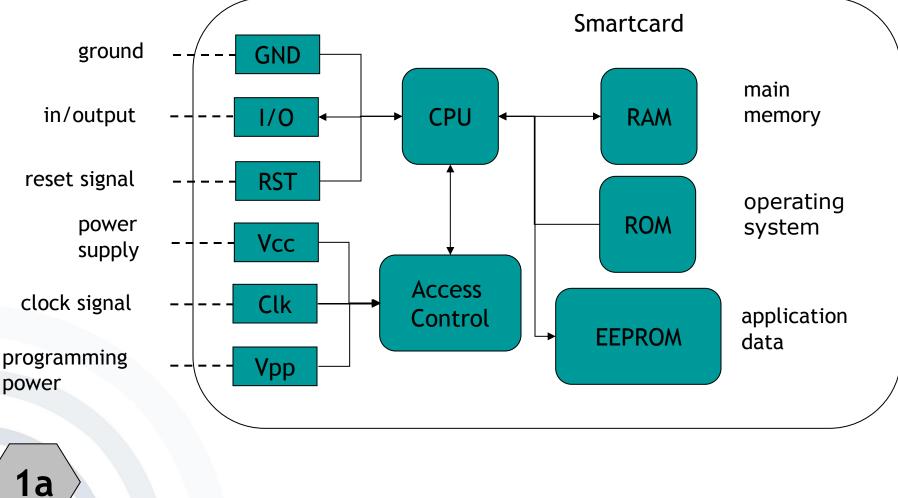
Deutsche Telekom Chair of Mobile Business & Multilateral Security Johann Wolfgang Goethe University Frankfurt a. M.

Literature

- This set of slides is based upon the following lectures:
 - Lecture 8: Smartcards and Related Application Infrastructures
 - Lecture 9: Mobile Devices
 - Lecture 10: Concepts of Mobile Operating Systems
 - Lecture 11: Market Overview of Mobile Operating Systems and Security Aspects

Exercise 1: Smartcards

a) What are smartcards and what components do they consist of (=what do they contain)?


- Small computers with memory, operating system, software, processor, I/O and access control
- Chip protected against manipulation
- After being initialised with keys and other data smartcards are distributed to their users.

1a

sound ---- GND in/output ---- I/O

SecCommerce2002]

b) Why are they used and what role do smartcards play with respect to
(i) security
(ii) applications?

- Used when security of data (e.g. for keys, signatures, physical access control, payment) is needed in insecure environments
- Examples:
 - Phone cards of Deutsche Telekom
 - Signature cards according to German Signature Law
 - Smartcard applications for PC
 - Smartcards for mobile communication (SIMs)

mobile business

1b

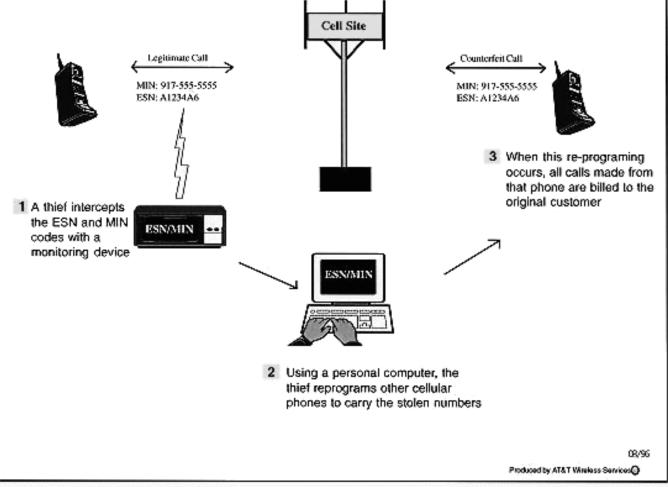
Smartcards – Examples

Protection needed against:

- Unauthorised usage of services through forged user data
- Duplication of a user's credentials
- "Cracking" of credentials
- Billing fraud

mobile business

Example for faulty system design (CDMA)


Duplication of intercepted user IDs

D

CELLULAR COUNTERFEITING/CLONING FRAUD

Cellular Phone Counterfeiting

With each call made, a cellular phone transmits an Electronic Serial Number (ESN) and a Mobile Identification Number (MIN) identifying the caller. Possession of these numbers is the key to the counterfeiting.

Exercise 2: Subscriber Identity Module (SIM)

a) Name the most important function of the Subscriber Identity Module (SIM) in GSM and UMTS networks.

mobile business

The Subscriber Identity Module (SIM)

- In GSM and UMTS since 1991, upcoming for WLAN
- Represents contract between subscriber & network operator
- Authorises a "phone" to use the network by linking it to a subscription
- By November 2014 more than 7.2 billion mobile-cellular subscriptions [ITU2014, GSMAI2014]
- More countries with SIM infrastructure (219, 2013-Q3) than with McDonald's (118, 2013-Q3) and more than UN member states (193, 2013-Q3) [GSM2013, McDonalds2013, UN2013]
- More and more called "Subscriber Identification Module" to reflect progress in the general field of Identity
 Management

Exercise 4: Subscriber Identity Module (SIM)

b) What does the Subscriber Identity Module contain? Which of these contents are protected, which are not and why?

SIM Card Content (Extract)

- Protected data:
 - IMSI, PIN, PUK
 - A3, A8 crypto algorithms
 - List of subscribed services
 - Language used by the subscriber
- Dynamic data:
 - Cell information
 - Frequency information
 - Dynamically generated (session) keys
 - Attributes of GSM login
 - User data (address book, telephone list, SMS memory)

Exercise 2: Subscriber Identity Module (SIM)

c) Name other functionalities of the Subscriber Identity Module.

SIM: Functionality

- SIM serves as "identity card" for GSM cellular phone subscribers.
- SIM identifies the issuer of the card important for the billing of roaming subscribers by roaming partner.
- SIM allows for secure billing of roaming subscribers through SIM-cryptography – important for card issuer.

 SIM contains additional configuration data of the GSM system.

Smartcards for Mobile Communication

SIMs are Smartcards:

- SIM cards serve as security medium.
- Tamper-resistance prevents counterfeiting.
- robust design
- Contain International Mobile Subscriber Identity (IMSI) for subscriber identification and the key K_i provided by the mobile operator
- Reliably execute computational functions for the mobile device

cf. [EffingRankl2002]

Exercise 2: Subscriber Identity Module (SIM)

d) What is SIM Application Toolkit?
(i) What does it do?
(ii) Name application examples for SIM Application Toolkit.

SIM: Integration into Mobile Phones

- ETSI GSM 11.11 [GSM2006] specifies electrical as well as software interfaces between SIM and device.
- A serial interface is used for accessing the card.
- Communication through SIM commands
- Device can access files or execute actions through SIM commands.
- "SIM Application Toolkit" allows for implementing of additional applications on a SIM.

2d

- Provides an interface for Value Added
 Services implemented on programmable
 SIMs for interacting with mobile devices
- Standardised 1996 as ETSI GSM 11.14, extended 1999 [GSM2006]
- Controls I/O, Telephony, Download
- Allows for security functionality
 - "Living standard"

SAT – Application Examples

- Mobile Banking and Brokerage
 - T-Mobile and T-Online SMS banking
- Secure payment via cellular phone
- Authentication of users trying to access servers
- Location-based services
 - ATM search, navigation

Security applications in general
Mobile signatures

mobile business

Exercise 3: Universal SIM/USIM

a) What is a USIM?

Universal SIM – USIM

- Standardised in 3GPP TS 21.111 and 3GPP TS 31.102 [GSM2006]
- Successor of SIM in 3G networks (but 3G networks are downward compatible to many SIMs)
- Supports different "virtual" USIMs and SIMs on one cards – i.e. multifunctional smartcard
- Specified as "UMTS-SIM", to support authentication, authorisation and computation of future services

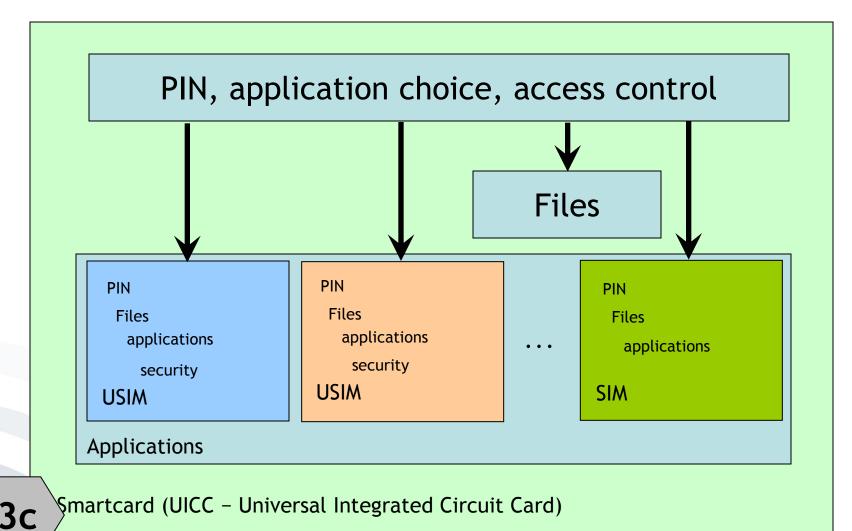
3

Exercise 3: Universal SIM/USIM

b) Name the innovations introduced with the USIM.

- Market entry of USIM "disguised" as SIM
 UMTS activated by operator
- Multiple USIMs possibly from competing providers – can technically coexist on one card. Selection via menu on mobile device
 Reduction of operator switching cost
- Switching to anonymous prepaid USIM as a privacy option when using privacy sensitive services?

Exercise 3: Universal SIM/USIM



c) What is a UICC and how do USIMs relate to a UICC?

USIM on UICC – Structure

27

Exercise 3: Universal SIM/USIM

d) Describe market opportunities and effects of competing USIMs.

USIM – Innovations

- Support for multiple applications
- End-to-end security from the USIM to the application
- Authentication of the network towards the USIM via cryptography
 Multilateral Security is possible!
- Downward compatible to SIM
- Extended phone book on card:
 - Email addresses
 - Multiple names & numbers for each entry
 - More memory
 - Standardised entries

Exercise 4: Mobile Devices

a) How can mobile devices be categorized?(i) Technical characteristics(ii) Application Aspects

- Categorisation is possible by:
 - Technical characteristics
 - Application aspects
 - Functional completeness (Is the functionality comparable to a desktop PC/Laptop?)
 - Size of the terminal/device
 - Security features

mobile business

- Hardware independence
 - Independent terminals
 - Terminals with external communication
 - Terminals with external security modules
 - Terminals with external memory
- Operating system Characteristics
 - Memory security, file security, access control
 - Security module support, secure I/O, program and system integrity

- Lifespan of an application
 - Battery consumption, amount of data, and size of memory
 - Data integrity, amount of communication, and costs
- Completeness of the functionality for the end-user
 - Information / Reaction
 - Limitations due to device size
 - Feature Sets

Categorisation of Mobile Devices Application Aspects 2

- Device size
 - Small / integrated devices
 - "Pocket-sized"
 - "Laptop-sized"
- Access to the security module
 - Data integrity, encryption
 - Digital signatures
 - Access control, authentication

Different requirements for different kinds of devices:

	Mobile Phone	Tablet	Laptop
Number of "Switch-ons" per day	low	low	variable
Frequency of use cases	very high	rather low	low
Duration of usage per task	?	short/ medium	high

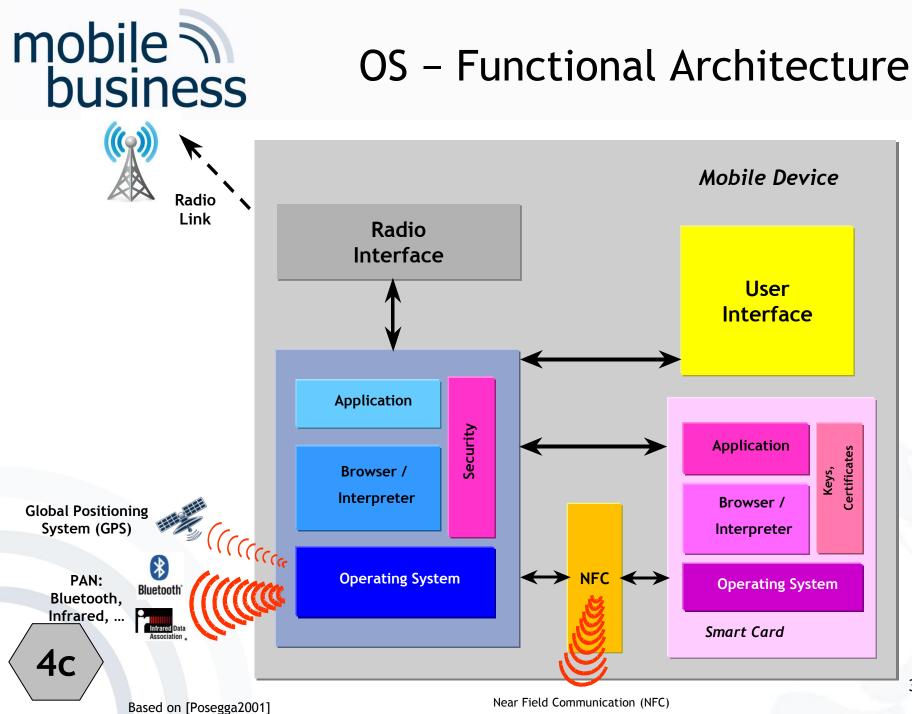
Based on [Burckhardt2001]

Exercise 4: Mobile Devices

b) Name four components of mobile devices. Which two of these components do considerably determine the size of a mobile terminal?

Size of a mobile Device

- The size of a mobile terminal is considerably determined by its:
 - Input Facilities (e.g. keyboard)
 - Output Facilities (e.g. display)


Separation of components (e.g. display in the watch, head-mounted-displays)

mobile business

Exercise 4: Mobile Devices

c) Describe the functional architecture of a mobile device.

Exercise 5: Personal Area Networks (PAN)

a) Personal Area Networks (PAN) - what are they good for, what do they do?

- Personal environment, short range
- Purpose: Connection of devices in short range, for example mobile device and printer.
- Replaces cable-connections:
 - Infrared Data Association (IrDA)
 - Bluetooth
 - Near Field Communication (NFC)

Exercise 5: Personal Area Networks (PAN)

b) Please do briefly describe the related technologies IRDA and Bluetooth. Name the advantages and disadvantages of both IRDA and Bluetooth.

mobile business

Personal Area Network (PAN) Infrared

- IrDA: Infrared Data Association (1993):
- Standardized infrared-protocols
- Asynchronous, serial connections up to 115 kbit/s (Serial Infrared) or 4 Mbit/s (Fast Infrared)
- Point-to-Point
- Protocol-family for various purposes

- Exemplary applications:
 - Transmission of mobile business cards
 - Sales data extraction from cigarette vending machines
 - Connection between mobile and laptop
 - Wireless printing
 - Remote control for consumer electronics, e.g. TVs

Personal Area Network (PAN) Infrared-Transmission

- Attributes:
 - Wireless
 - Range of up to 10 meters
 - Illumination-angle 15°-30°
- Disadvantages:
 - Sounding: If the infrared-ray misses the target
 - Optical connection required
 - Short interruptions of the optical connection, e.g. between laptop and mobile phone in trains, lead to complete network-interruption.

- Frequency range of 2.4 GHz
- Simple and cheap possibility to set up ad-hoc networks of limited range (up to 10 meters)
- No official standard, but de-facto-standard
- Consortium: Ericsson, Intel, IBM, Nokia, Toshiba, etc.
- Broadly supported by related industries:
 - Computer hardware
 - Software

Consumer electronics

Personal Area Network (PAN)

Popular Bluetooth Applications

Sound transmission (to earphones, headphones or Hi-Fi equipment)

Wireless communications between devices (Bluetooth-Headset)

Personal Area Network (PAN) Bluetooth Applications

- Connection of periphery-devices (headsets, keyboards, mice, etc.)
- Setting up of ad-hoc networks for spontaneous data exchange
- Ad-hoc connection of different networks (e.g. laptop ⇔ mobile or phone ⇔ GSM ⇔ net)
- Applications similar to applications based on infrared technology
- Weaknesses of infrared technology were overcome
 - Increased bandwidth (up to 865.2KBit/s)
 - No optical connection between devices necessary
 - Expanded range (up to 10m)
 - Allows setting up of ad-hoc networks instead of point-topoint connections

Exercise 6: Mobile Operating Systems and Security Aspects

a) What are the advantages and disadvantages of mobile operating systems unavailable to other device manufacturers?

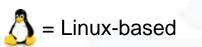
Mobile OS unavailable to other device manufacturers

- Originally, most mobile phone manufacturers used their own "closed" operating systems for their mobile devices.
- Later, more and more platforms switched to more open and interoperable operating systems (e.g. Windows CE, Symbian OS, Android).
- Some manufacturers (still) rely on own OS, e.g. RIM Blackberry OS, Apple iOS.
- Advantage: Tend to be not as much affected by malware than "open" operating systems
- Disadvantage: Less flexible, as 3rd-party software cannot e easily installed and executed

 b) Name two mobile operating systems unavailable to other device manufacturers and two manufacturer-independent mobile operating systems.

mobile business

Mobile OS unavailable to other device manufacturers


- Palm OS (Garnet OS)
 - Latest release: Most devices equipped with Palm OS 5.4
- Apple iOS (Unix-based)
 - Latest release: iOS 8
- BlackBerry OS
 - Latest release: BlackBerry OS 10.3
- Nokia Series 40, Asha
 - Latest release: Asha 1.4
- Samsung bada
 - Latest release: 2.0

Manufacturer-independent mobile OS

- Linux: LiMo (Linux Mobile), Openmoko Linux, Qt Extended (Qtopia)
- Symbian platform
 - Latest release: "Nokia Belle Feature Pack 2" for Symbian³ devices
- Android (by Open Handset Alliance)
 - Latest release: 5.0 (Lollipop)
- Windows Mobile
 - Latest release: Windows Mobile 6.5.5
- Windows Phone
 - Latest release: Windows Phone 8.1
- Maemo (by Nokia) \rightarrow MeeGo (by Nokia, Intel) \rightarrow Sailfish OS (by Jolla)
 - Latest release: Sailfish OS v1.1.0.39 (October 2014)
- Tizen (by Samsung, Intel, Linux Foundation)
 - Latest release: 2.3 (November 2014)
- Firefox OS (by non-profit organisation Mozilla)
 - Latest release: 1.4 (August 2014)
- China-Focused Mobile OS
 - Currently under development by Taiwan-based HTC [WSJ2013]

Exercise 6: Mobile Operating Systems and Security Aspects

c) When mobile operating systems allow the execution of 3rd-party software, what are the threats resulting from this for the user?

6C

Current Threats from Malware on Mobile OS

- Many mobile operating systems allow the execution of 3rd-party software:
 - Malware can be executed on mobile operating systems, either intentionally or by security leaks inside the mobile operating system (exploits).
- Possible threats for the user are:
 - Device malfunction
 - Loss of data (malware erasing data)
 - Loss of money (e.g. malware sending SMS to premium services)
 - Shorter battery runtime (more processing/resource usage)

mobile business

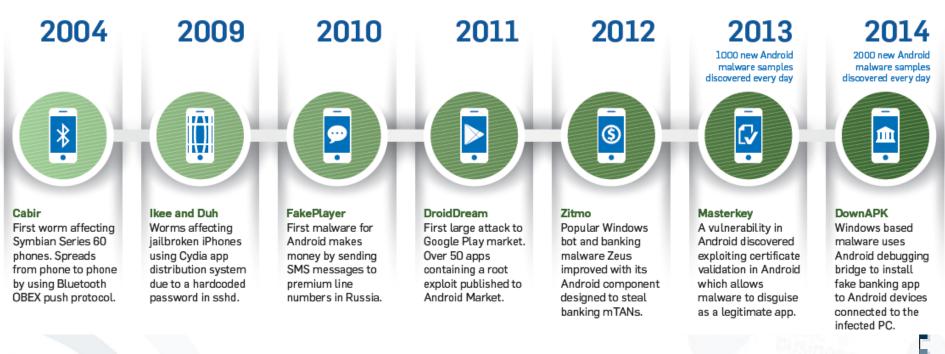
Timeline PDA/Mobile Threats

Beginnings of Mobile Malware

- 09/2000: Liberty Horse Trojan
- 12/2000: Telefonica SMS Mailer
- 08/2001: Flooder sends unwanted SMS
- 09/2001: Phage erases data on Palm devices
- 02/2003: Nokia V-Card exploit
- 09/2004: First Symbian OS malware

Strong growth of Mobile Malware

- The number of malware programs masquerading as legitimate mobile apps grew by more than 600 percent in 2012
- **6c** Most popular target: Android


[ATD2013]

6C

Timeline PDA/Mobile Threats

10 years of malware for mobile devices

Exercise 6: Mobile Operating Systems and Security Aspects

 d) What are the security precautions and countermeasures available in mobile operating systems?

Security Precautions and Countermeasures

- Memory protection
 - Processes are not able to access the memory of other processes.
- File protection
 - Encryption
 - Access control
- Access controls
 - Definition of access rights and monitoring of their enforcement.
- Support for security modules
- Secure I/O
- Code integrity management: Integrity of programs is checked before the are started by e.g.
 - Checking certificates
 - Proof Carrying Code
- Additional Security Software may be needed, e.g.
 - Virus scanners
 - Firewalls

6d

Exercise 7: Concepts of Mobile Operating Systems

a) What is the primary goal and what is the secondary goal of an OS?

Mobile Operating Systems

What is an operating system (OS)?

- An OS is a program that serves as a mediator between the user and the hardware.
- It enables the users to execute programs
- Other properties: Multi-user, multi-thread, high availability, real-time, ...
- **Primary goal of an OS:** Easy usage of the actual hardware
- Secondary goal of an OS: Efficient usage of the hardware

Exercise 7: Concepts of Mobile Operating Systems

b) Name three functions of the operating system and state two examples (exemplifications) for each of these functions.

OS Functions

Controlling and sharing of resources

- Computation time, real-time processing "Who is computing how much? How long does it take?"
- Memory (RAM, Disk) "Who gets which part of the memory?"

Security functions

- Protection of the data (memory, hard disk):
 "Who is allowed to access resources?"
- Process protection (computation time, code, isolation): "Who is allowed to compute?"
- Security module support

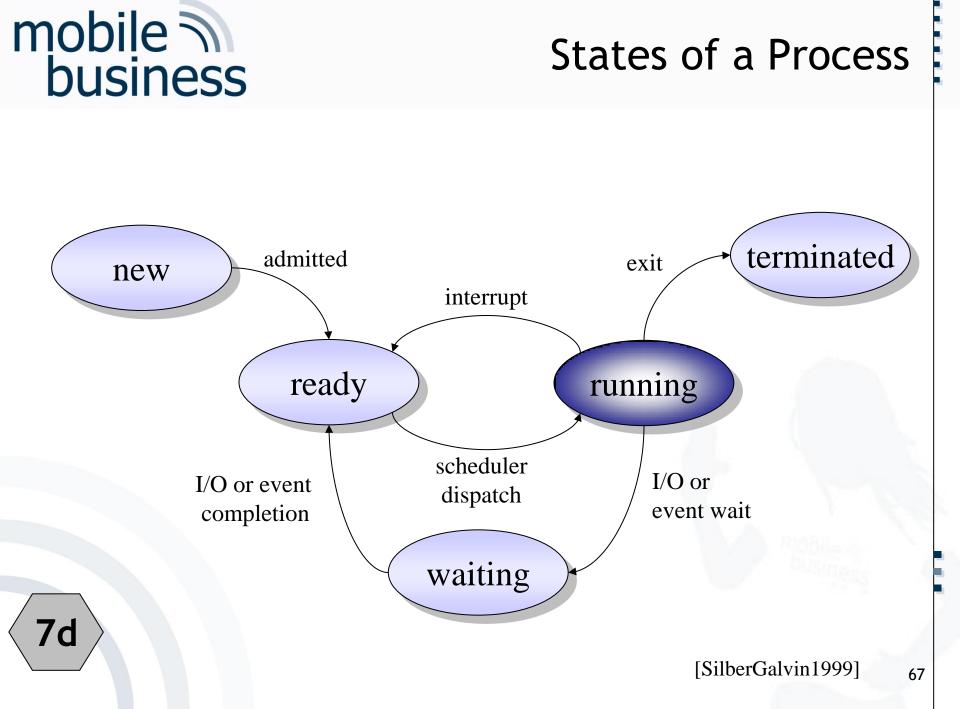
Communication

- Allocation of I/O-Resources
- Processing of the communication
- User interface (UI)

Exercise 7: Concepts of Mobile Operating Systems

c) What is a process? What does it do, what does it use and how is the mobile operating system involved?

- A process is a program "in operation".
- A process uses resources, such as CPU time, memory, files, and I/O devices.
- The resources of a process are allocated while it is created or when it is running.
- The operating system has to manage the process (creation, resource distribution, etc.).

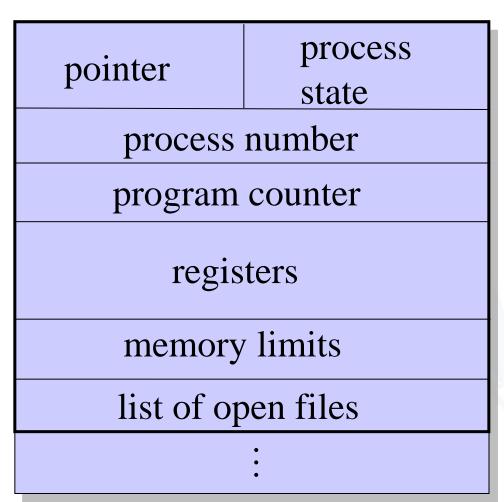

Components of a Process

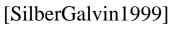
- More than simple code!
- Program counter: Indicates on which point in the code the process resides.
- Contents of the process registers:
 - Stack: Contains temporary data, such as subroutine parameters or return addresses, etc.
 - Data section: Contains the global variables
 - *Heap:* Dynamically allocated memory

Exercise 7: Concepts of Mobile Operating Systems

d) Which are the states of a process?

States of a Process


- New: Process is created.
- Ready: Process is waiting for being executed.
- Running: Process is running.
- Waiting: Process is waiting for results:
 - Completion of an I/O-operation
 - An event
- Terminated: Process is terminated.



mobile business

- Abstracted View on a Process: Process Control Block (PCB)
- Abstracted representation of the contents of a process control block (PCB), needed by an operating system.

Abstracted View on a Process: Process Control Block (PCB)

- Process State: new, ready, running, waiting, ...
- Program Counter: Address of the next command to be executed
- CPU Registers: Accumulator, Index Register, Stack Pointer and general registers
- Information for:
 - CPU-Scheduling
 - Memory-Management
 - Accounting
 - I/O Status

mobile business

Literature

- This set of slides is based upon the following lectures:
 - Lecture 8: Smartcards and Related Application Infrastructures
 - Lecture 9: Mobile Devices
 - Lecture 10: Concepts of Mobile Operating Systems
 - Lecture 11: Market Overview of Mobile Operating Systems and Security Aspects