mobile $)$
 business

Lecture 4

Cryptography I

Information \& Communication Security (WS 2014)

Prof. Dr. Kai Rannenberg

Deutsche Telekom Chair of Mobile Business \& Multilateral Security Goethe University Frankfurt a. M.

- Introduction
- Classical cryptosystems
- General concept
- Substitution ciphers
- Caesar cipher
- Vigenére cipher
- One time pad
- AES
- Advantages and Problems
- Public key cryptography

Cryptosystem

- A Cryptosystem is a 5-tuple (E, D, P, K, C):
- A set P of plaintexts
- A set K of keys
- A set C of ciphertexts
- A set E of enciphering functions, with $E: P \times K$-> C
- A set D of deciphering functions, with $D: C \times K$-> P

mobile business

Example

Cryptographic Systems

- Intention
- Confidentiality (secrecy of messages): encryption systems
- Integrity (protection from undetected manipulation) and accountability:
authentication systems and digital signature systems
- Key distribution
- Symmetric:

Both partners have the same key.

- Asymmetric:

Different (but related) keys for encryption and decryption

- In practice mostly hybrid systems

mobile business

Kerckhoffs' principle

- The principle (first stated in 1883):
- The secret lies within the key and not within the algorithm;
- Thus "Security through obscurity" is not a sustainable solution.
- In our small example:
- Separation of algorithm \boldsymbol{e} and key $\boldsymbol{k}_{\boldsymbol{e}}$

mobile business

Cryptography - Important Concepts

- One-Time Pad - Shannon / Vernam
- Theoretically completely unbreakable, but highly impractical
- Shannon's concepts: Confusion and Diffusion
- Relation between M, C, and K should be as complex as possible ($M=$ message, $C=$ cipher, $K=$ key)
- Every ciphertext character should depend on as many plaintext characters and as many characters of the encryption key as possible
- "Avalanche effect" (small modification, big impact)
- Trapdoor function (one-way function)
- Fast in one direction, not in the opposite direction (without secret information)
- Knowing the secret allows the function to work in the opposite direction (access to the trapdoor).

mobile business

- In a ciphertext only attack, the adversary has only the ciphertext. Her goal is to find the corresponding plaintext. If possible, she may try to find the key, too.
- In a known plaintext attack, the adversary has the plaintext and the ciphertext that was enciphered. Her goal is to find the key that was used.
- In a chosen plaintext attack, the adversary may ask that specific plaintexts be enciphered. She is given the corresponding ciphertexts. Her goal is to find the key that was used.
mobile
business
- Introduction
- Classical cryptosystems
- General concept
- Substitution ciphers
- Caesar cipher
- Vigenére cipher
- One time pad
- AES
- Advantages and Problems
- Public key cryptography

Symmetric Encryption Systems

- Typical applications
- confidential storage of user data
- transfer of data between 2 users who negotiate a key via a secure channel
- Examples
- Vernam-Code (one-time pad, Gilbert Vernam)
- key length = length of the plaintext (information theoretically secure)
- DES: Data Encryption Standard
- key length 56 bit, so 2^{56} different keys
- AES: Advanced Encryption Standard (Rijndael, [NIST])
- 3 alternatives for key length: 128, 192 und 256 bit
mobile
business
- Introduction
- Classical cryptosystems
- General concept
- Substitution ciphers
- Caesar cipher
- Vigenére cipher
- One time pad
- AES
- Advantages and Problems
- Public key cryptography

mobile business

Symmetric Encryption Systems

black box with lock, two equal keys

mobile business

Symmetric Encryption Systems

Symmetric Encryption Systems

- Keys have to be kept secret (secret key crypto system).
- It must not be possible to infer on the plaintext or the keys used from the encrypted text (ideally encrypted text is not distinguishable from a numerical random sequence).
- Each key shall be equally probable.
- In principle each system with limited key length is breakable by testing all possible keys.
- Publication of encoding and decoding functions (algorithms) is considered as good style and is trustbuilding.
- Security of cryptosystems should base on the strength of chosen key lengths.
mobile
business
- Introduction
- Classical cryptosystems
- General concept
- Substitution ciphers
- Caesar cipher
- Vigenére cipher
- One time pad
- AES
- Advantages and Problems
- Public key cryptography

A	B	C	D	E	F	G	H	I	J	K	L	M
0	1	2	3	4	5	6	7	8	9	10	11	12

N	O	P	Q	R	S	T	U	V	W	X	Y	Z
13	14	15	16	17	18	19	20	21	22	23	24	25

- We assign a number for every character.
- This enables us to calculate with letters as if they were numbers.

Caesar Cipher

- For $k \in\{0 . .25\}$ we have:
- An encryption function e: x -> (x+k) mod 26
- A decryption function d: x -> (x-k) mod 26
- In this case $\mathrm{k}_{\mathrm{e}}=\mathrm{k}_{\mathrm{d}}$

Example

mobile business

Some Attacks

- In case of a known plaintext attack it is trivial to get the key used.
- There are only 26 possible keys. This cipher is therefore vulnerable to a brute force attack.
- This cipher is also vulnerable to a statistical ciphertext-only attack.
- Of course this is a very simple form of encryption.
- The encryption and decryption algorithms are very easy and fast to compute.
- It uses a very limited key space ($\mathrm{n}=26$).
- Therefore, the encryption is very easy and fast to compromise.

mobile business

Can We Make it More Secure?

- Use a permutation of the alphabet as the key.
- Example:

A	B	C	D	E	F	G	H	I	J	K	L	M
Q	W	E	R	T	Z	U	I	O	P	A	S	D

N	O	P	Q	R	S	T	U	V	W	X	Y
F	G	H	J	K	L	Y	X	C	V	B	N

- "HELLO" -> "ITSSG"

mobile business

- Use of permutations increases the key space.
- Therefore, a brute force attack becomes more difficult.
- The encryption and decryption are not much harder to compute.
- Table lookup
- Still vulnerable to a statistical ciphertextonly attack.

mobile business

Statistical Ciphertext-only Attack

- Use statistical frequency of occurrence of single characters to figure out the key.
- Language dependent
- Frequencies of character pairs (bigrams) may also be used

E	11.1607\%	M	3.0129\%
A	8.4966\%	H	3.0034\%
R	7.5809\%	G	2.4705\%
I	7.5448\%	B	2.0720\%
0	7.1635\%	F	1.8121\%
T	6.9509\%	Y	1.7779\%
N	6.6544\%	W	1.2899\%
S	5.7351\%	K	1.1016\%
L	5.4893\%	V	1.0074\%
C	4.5388\%	X	0.2902\%
U	3.6308\%	Z	0.2722\%
D	3.3844\%	J	0.1965\%
P	3.1671\%	Q	0.1962\%

- Introduction
- Classical cryptosystems
- General concept
- Substitution ciphers
- Caesar cipher
- Vigenére cipher
- One time pad
- AES
- Advantages and Problems
- Public key cryptography

mobile business

Vigenére Cipher

- The Vigenére cipher chooses a sequence of keys, represented by a string.
- The key letters are applied to successive plaintext characters.
- When the end of the key is reached, the key starts over.
- The length of the key is called the period of the cipher.

mobile business

Vigenére Tableau

Example Vigenére Cipher

- Let the message be „THE BOY HAS THE BAG" and let the key be „VIG":
- Plaintext:
- Key:

THEBOYHASTHEBAG
VIGVIGVIGVIGVIG
OPKWWECIYOPKWIM

Assessment Vigenére Cipher

- For many years, the Vigenére cipher was considered unbreakable.
- Then a Prussian cavalry officer named Kasiski noticed that repetitions occur when characters of the key appear over the same characters in the plaintext.
- The number of characters between successive repetitions is a multiple of the period (key length).
- Given this information and a short period the Vigenére cipher is quite easily breakable.
- Example: The Caesar cipher is a Vigenére cipher with a period of 1 .

Example Vigenére Cipher

- Let the message be „THE BOY HAS THE BAG" and let the key be „VIG":
- Plaintext:
- Key:
- Ciphertext: OpkWWECIYOpKWIM
mobile
business
- Introduction
- Classical cryptosystems
- General concept
- Substitution ciphers
- Caesar cipher
- Vigenére cipher
- One time pad
- AES
- Advantages and Problems
- Public key cryptography

One Time Pad

- Invented by Gilbert Vernam
- The one-time pad is basically a Vigenére cipher.
- The length of the key is as long as the length of the plaintext.
- Therefore, there are no periodic reoccurrences.
- The key is randomly chosen and only used once.
- Every key has the same probability.

Example One Time Pad

mobile business

Assessment One Time Pad

- The one time pad is unbreakable by ciphertext only attacks.
- Example: Let the ciphertext be "FGHA".
- Since we know the key length is at least 4 and the probability of every possible key is equal, the plaintext can be any 4 -letter word possible.
- In a known plaintext attack we can deduct the key.
- Then we know which key was used to encrypt the message we already know.
- But the next message is encrypted with a different key, because every key is only used once.
- The same applies to a chosen plaintext attack.
- The one-time pad is information theoretically secure and provably impossible to break.
mobile
business
- Introduction
- Classical cryptosystems
- General concept
- Substitution ciphers
- Caesar cipher
- Vigenére cipher
- One time pad
- AES
- Advantages and Problems
- Public key cryptography

mobile business

Advanced Encryption Standard

- The Data Encryption Standard (DES) was designed to encipher sensitive but not classified data.
- The standard has been issued in 1977.
- In 1998, a design for a computer system and software that could break any DES-enciphered message within a few days was published.
- By 1999, it was clear that the DES no longer provided the same level of security it had 10 years earlier, and the search was on for a new, stronger cipher.
- This new cipher is called Advanced Encryption Standard (AES).
- AES has been approved for Secret or even Top Secret information by the NSA.

AES Encryption - Overview

- AES encryption
- has a variable number of rounds
- depending on key size.
- To encipher a block of data in AES
- Initialize (key schedule...)
- Stretch key data
- Initialization Round
- Then several rounds of encryption
- Shifting and mixing bits
- Finally, some postprocessing
- perform a round with the last step omitted

mobile $)$ business

Encryption Round (1)

- AddRoundKey
- XOR (mix bits of) current state a and round key
- Round key k derived using key schedule
- SubBytes
- Substitution using a lookup table (S-Box)

mobile business

Encryption Round (2)

- ShiftRows
- Shift each row by row index
- MixColumns

- 4 key bytes combined into each column using polynomial multiplication modulo 2^{8} [in GF $\left.\left(2^{8}\right)\right]$

- Introduction
- Classical cryptosystems
- General concept
- Substitution ciphers
- Caesar cipher
- Vigenére cipher
- One time pad
- AES
- Advantages and Problems
- Public key cryptography

Symmetric Encryption

Advantage: Algorithms are very fast

Algorithm	Performance ${ }^{*}$
RC6	78 ms
SERPENT	95 ms
IDEA	170 ms
MARS	80 ms
TWOFISH	100 ms
DES-ede	250 ms
RIJNDEAL (AES)	65 ms

* Encryption of 1 MB on a Pentium 2.8 GHz, using the FlexiProvider Java)
[J. Buchmann: Lecture Public Key Infrastrukturen, FG Theoretische Informatik, TU-Darmstadt]

mobile $)$ business

Disadvantage: Key Exchange

[adopted from J. Buchmann: Lecture Public Key Infrastrukturen, FG Theoretische Informatik, TU-Darmstadt]

mobile business

A Possible Solution

[J. Buchmann: Lecture Public Key Infrastrukturen, FG Theoretische Informatik, TU-Darmstadt]

mobile business

- One key per communication pair is necessary.
- Secure agreement and transfer are necessary.
- A center for key distribution is possible but this party then knows all secret keys!

mobile business

Remark

„Anybody who asserts that a problem is readily solved by encryption, understands neither encryption nor the problem."
(Roger Needham / Butler Lampson)

[The Marshall Symposium: Address Roger Needham,

References

- [Bi2005] Matt Bishop: Introduction to Computer Security. Boston: Addison Wesley, 2005. pp. 97-113
- [Ne2003] Roger Needham: Computer security? Philosophical Transactions of the Royal Society, Series A, Mathematical, Physical and Engineering Sciences, 361, 2003, pp. 1549-1555; reprinted pp. 319-326 in Andrew Herbert and Karen Spärck Jones: Computer systems: Theory, Technology, and Applications, New York, Springer, 2004
- [Ra2004] Brian Randell: Brief Encounters; Pp. 229-235 in: Andrew Herbert, Karen Spärck Jones: Computer Systems: Theory, Technology, and Applications; New York, Springer 2004

