

Lecture 4

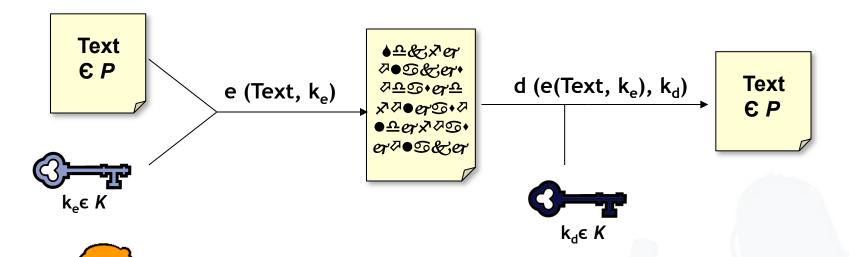
Cryptography I

Information & Communication Security (WS 2014)

Prof. Dr. Kai Rannenberg

Deutsche Telekom Chair of Mobile Business & Multilateral Security Goethe University Frankfurt a. M.

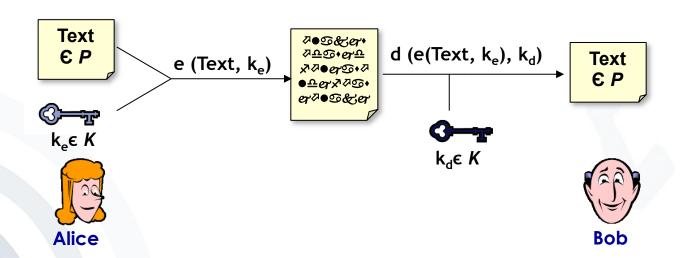
- Introduction
- Classical cryptosystems
 - General concept
 - Substitution ciphers
 - Caesar cipher
 - Vigenére cipher
 - One time pad
 - AES
 - Advantages and Problems
- Public key cryptography



- A Cryptosystem is a 5-tuple (*E*,*D*,*P*,*K*,*C*):
 - A set P of plaintexts
 - A set K of keys
 - A set C of ciphertexts
 - A set E of enciphering functions,
 with E: P x K -> C
 - A set D of deciphering functions,
 with D: C x K -> P

Alice

Example


Cryptographic Systems

- Intention
 - Confidentiality (secrecy of messages): encryption systems
 - Integrity (protection from undetected manipulation) and accountability:
 authentication systems and digital signature systems
- Key distribution
 - Symmetric: Both partners have the same key.
 - Asymmetric:
 Different (but related) keys for encryption and decryption
- In practice mostly hybrid systems

Kerckhoffs' principle

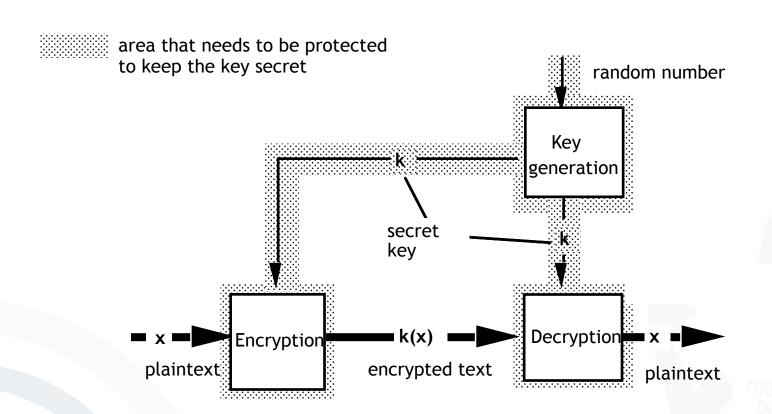
- The principle (first stated in 1883):
 - The secret lies within the key and not within the algorithm;
 - Thus "Security through obscurity" is not a sustainable solution.
- In our small example:
 - Separation of algorithm e and key k_e

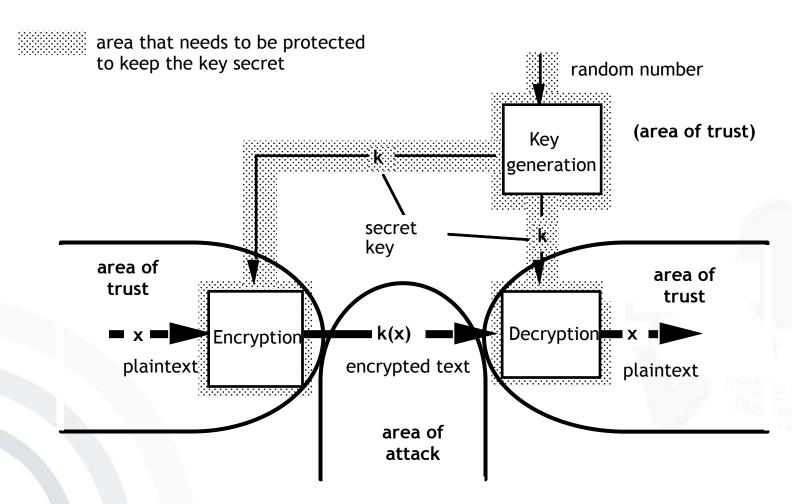
Cryptography - Important Concepts

- One-Time Pad Shannon / Vernam
 - Theoretically completely unbreakable, but highly impractical
- Shannon's concepts: Confusion and Diffusion
 - Relation between M, C, and K should be as complex as possible (M = message, C = cipher, K = key)
 - Every ciphertext character should depend on as many plaintext characters and as many characters of the encryption key as possible
 - "Avalanche effect" (small modification, big impact)
- Trapdoor function (one-way function)
 - Fast in one direction, not in the opposite direction (without secret information)
 - Knowing the secret allows the function to work in the opposite direction (access to the trapdoor).

- In a ciphertext only attack, the adversary has only the ciphertext. Her goal is to find the corresponding plaintext. If possible, she may try to find the key, too.
- In a known plaintext attack, the adversary has the plaintext and the ciphertext that was enciphered. Her goal is to find the key that was used.
- In a *chosen plaintext* attack, the adversary may ask that specific plaintexts be enciphered. She is given the corresponding ciphertexts. Her goal is to find the key that was used.

- Introduction
- Classical cryptosystems
 - General concept
 - Substitution ciphers
 - Caesar cipher
 - Vigenére cipher
 - One time pad
 - AES
 - Advantages and Problems
- Public key cryptography


- Typical applications
 - confidential storage of user data
 - transfer of data between 2 users who negotiate a key via a secure channel
- Examples
 - Vernam-Code (one-time pad, Gilbert Vernam)
 - key length = length of the plaintext (information theoretically secure)
 - DES: Data Encryption Standard
 - key length 56 bit, so 2⁵⁶ different keys
 - AES: Advanced Encryption Standard (Rijndael, [NIST])
 - 3 alternatives for key length: 128, 192 und 256 bit


- Introduction
- Classical cryptosystems
 - General concept
 - Substitution ciphers
 - Caesar cipher
 - Vigenére cipher
 - One time pad
 - AES
 - Advantages and Problems
- Public key cryptography

black box with lock, two equal keys

- Keys have to be kept secret (secret key crypto system).
- It must not be possible to infer on the plaintext or the keys used from the encrypted text (ideally encrypted text is not distinguishable from a numerical random sequence).
- Each key shall be equally probable.
- In principle each system with limited key length is breakable by testing all possible keys.
- Publication of encoding and decoding functions (algorithms) is considered as good style and is trustbuilding.
- Security of cryptosystems should base on the strength of chosen key lengths.

- Introduction
- Classical cryptosystems
 - General concept
 - Substitution ciphers
 - Caesar cipher
 - Vigenére cipher
 - One time pad
 - AES
 - Advantages and Problems
- Public key cryptography

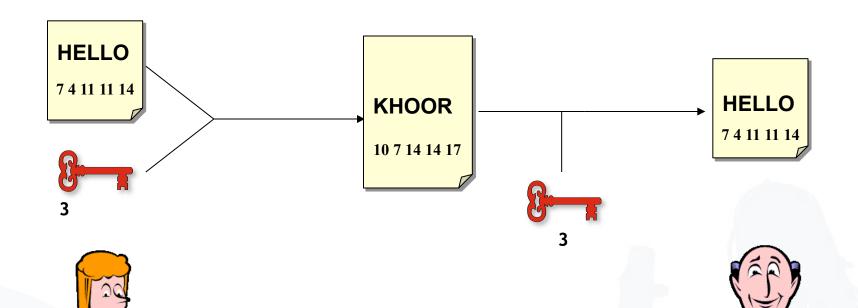
Caesar Cipher

Α	В	С	D	Ε	F	G	Н		J	K	L	M
0	1	2	3	4	5	6	7	8	9	10	11	12

N	O	Р	Q	R	S	Τ	U	٧	W	X	Y	Z
13	14	15	16	17	18	19	20	21	22	23	24	25

- We assign a number for every character.
- This enables us to calculate with letters as if they were numbers.

- For k \in {0...25} we have:
- An encryption functione: x -> (x+k) mod 26
- A decryption function
 d: x -> (x-k) mod 26


In this case k_e = k_d

Alice

Example

Bob

- In case of a known plaintext attack it is trivial to get the key used.
- There are only 26 possible keys. This cipher is therefore vulnerable to a brute force attack.
- This cipher is also vulnerable to a statistical ciphertext-only attack.

Assessment of Caesar Cipher

- Of course this is a very simple form of encryption.
- The encryption and decryption algorithms are very easy and fast to compute.
- It uses a very limited key space (n=26).
- Therefore, the encryption is very easy and fast to compromise.

Can We Make it More Secure?

- Use a permutation of the alphabet as the key.
- Example:

Α												
Q	W	Ε	R	Т	Z	U		0	Р	Α	S	D
N	0	Р	Q	R	S	Т	U	V	W	X	Υ	Z
									٧			

"HELLO" -> "ITSSG"

- Use of permutations increases the key space.
- Therefore, a brute force attack becomes more difficult.
- The encryption and decryption are not much harder to compute.
 - Table lookup
- Still vulnerable to a statistical ciphertextonly attack.

Statistical Ciphertext-only Attack

- Use statistical frequency of occurrence of single characters to figure out the key.
- Language dependent
- Frequencies of character pairs (bigrams) may also be used

E	11.1607%	•	M	3.0129%
A	8.4966%		Н	3.0034%
R	7.5809%		G	2.4705%
I	7.5448%		В	2.0720%
0	7.1635%		F	1.8121%
T	6.9509%		Y	1.7779%
N	6.6544%		W	1.2899%
S	5.7351%		K	1.1016%
L	5.4893%		V	1.0074%
C	4.5388%		X	0.2902%
U	3.6308%		Z	0.2722%
D	3.3844%		J	0.1965%
P	3.1671%		Q	0.1962%
		(English)		

(English)

- Introduction
- Classical cryptosystems
 - General concept
 - Substitution ciphers
 - Caesar cipher
 - Vigenére cipher
 - One time pad
 - AES
 - Advantages and Problems
- Public key cryptography

- The Vigenére cipher chooses a sequence of keys, represented by a string.
- The key letters are applied to successive plaintext characters.
- When the end of the key is reached, the key starts over.
- The length of the key is called the period of the cipher.

Vigenére Tableau

```
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
```


Example Vigenére Cipher

Let the message be "THE BOY HAS THE BAG" and let the key be "VIG":

■ Plaintext: THEBOYHASTHEBAG

■ Key: VIGVIGVIGVIG

■ Ciphertext: OPKWWECIYOPKWIM

Assessment Vigenére Cipher

- For many years, the Vigenére cipher was considered unbreakable.
- Then a Prussian cavalry officer named Kasiski noticed that repetitions occur when characters of the key appear over the same characters in the plaintext.
- The number of characters between successive repetitions is a multiple of the period (key length).
- Given this information and a short period the Vigenére cipher is quite easily breakable.
- Example: The Caesar cipher is a Vigenére cipher with a period of 1.

Example Vigenére Cipher

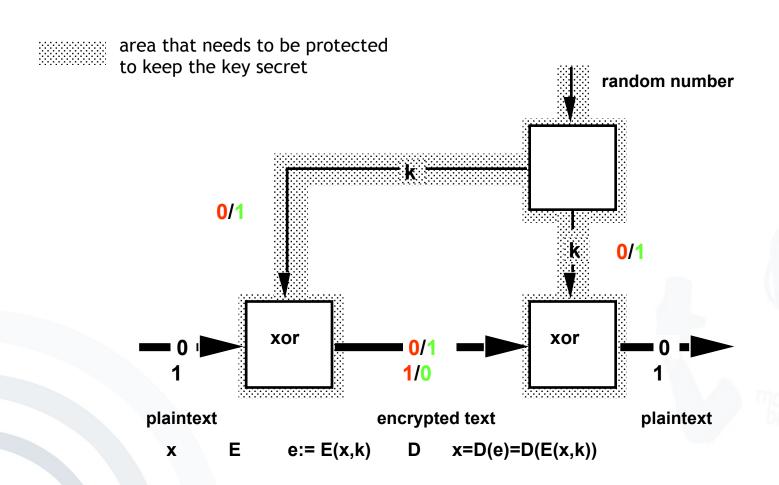
Let the message be "THE BOY HAS THE BAG" and let the key be "VIG":

Plaintext: THEBOYHASTHEBAG

Key:
VIGVIGVIGVIG

Ciphertext: OPKWWECIYOPKWIM

- Introduction
- Classical cryptosystems
 - General concept
 - Substitution ciphers
 - Caesar cipher
 - Vigenére cipher
 - One time pad
 - AES
 - Advantages and Problems
- Public key cryptography



- Invented by Gilbert Vernam
- The one-time pad is basically a Vigenére cipher.
- The length of the key is as long as the length of the plaintext.
- Therefore, there are no periodic reoccurrences.
- The key is randomly chosen and only used once.
- Every key has the same probability.

Example One Time Pad

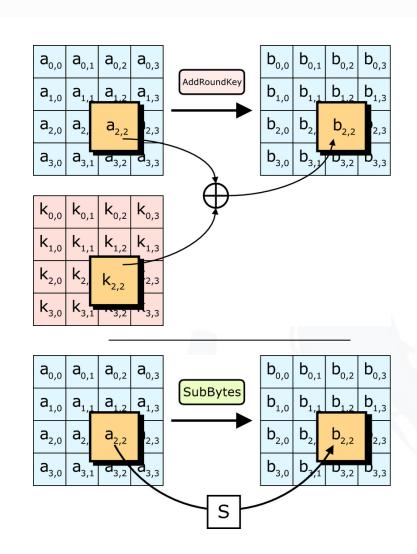
Assessment One Time Pad

- The one time pad is unbreakable by ciphertext only attacks.
 - Example: Let the ciphertext be "FGHA".
 - Since we know the key length is at least 4 and the probability of every possible key is equal, the plaintext can be any 4-letter word possible.
- In a known plaintext attack we can deduct the key.
 - Then we know which key was used to encrypt the message we already know.
 - But the next message is encrypted with a different key, because every key is only used once.
- The same applies to a chosen plaintext attack.
- The one-time pad is information theoretically secure and provably impossible to break.

- Introduction
- Classical cryptosystems
 - General concept
 - Substitution ciphers
 - Caesar cipher
 - Vigenére cipher
 - One time pad
 - AES
 - Advantages and Problems
- Public key cryptography

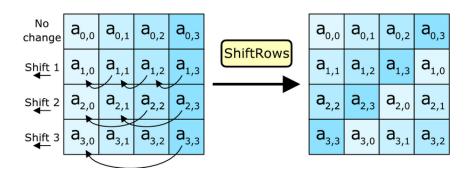
Advanced Encryption Standard

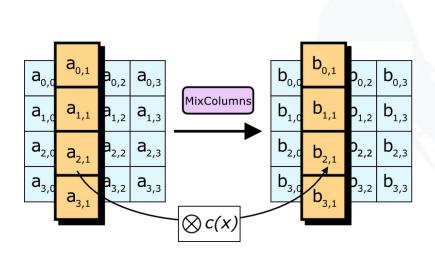
- The Data Encryption Standard (DES) was designed to encipher sensitive but not classified data.
- The standard has been issued in 1977.
- In 1998, a design for a computer system and software that could break any DES-enciphered message within a few days was published.
- By 1999, it was clear that the DES no longer provided the same level of security it had 10 years earlier, and the search was on for a new, stronger cipher.
- This new cipher is called Advanced Encryption Standard (AES).
- AES has been approved for Secret or even Top Secret information by the NSA.


AES Encryption - Overview

- AES encryption
 - has a variable number of rounds
 - depending on key size.
- To encipher a block of data in AES
 - Initialize (key schedule...)
 - Stretch key data
 - Initialization Round
 - Then several rounds of encryption
 - Shifting and mixing bits
 - Finally, some postprocessing
 - perform a round with the last step omitted

Encryption Round (1)

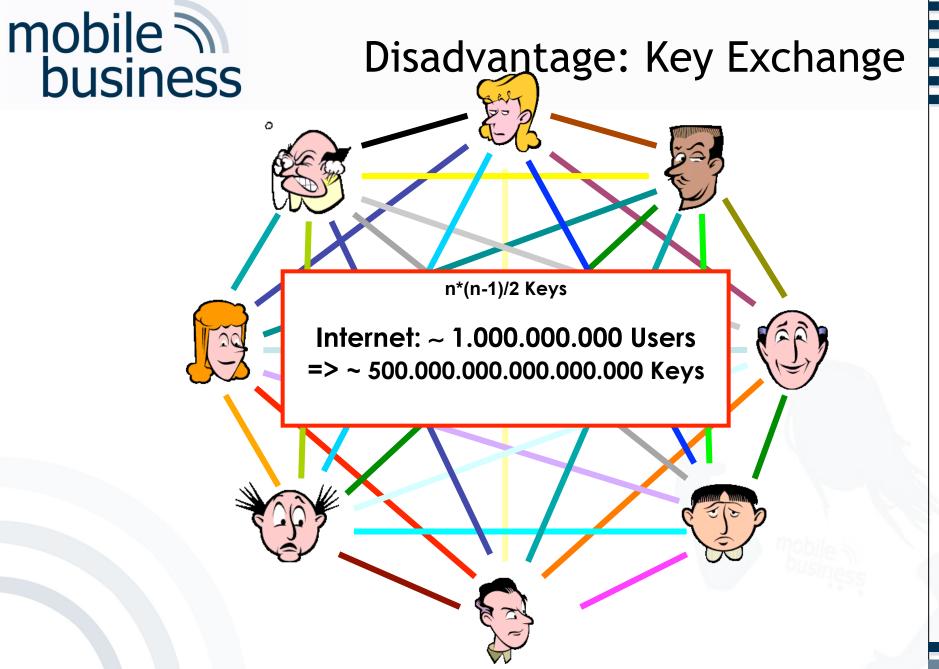

- AddRoundKey
 - XOR (mix bits of) current state a and round key
 - Round key k derived using key schedule
- SubBytes
 - Substitution using a lookup table (S-Box)



Encryption Round (2)

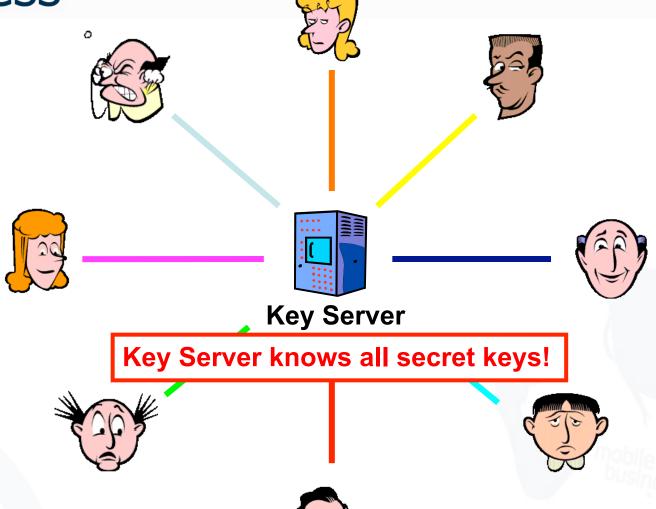
- ShiftRows
 - Shift each row by row index
- MixColumns
 - 4 key bytes combined into each column using polynomial multiplication modulo 28 [in GF(28)]

- Introduction
- Classical cryptosystems
 - General concept
 - Substitution ciphers
 - Caesar cipher
 - Vigenére cipher
 - One time pad
 - AES
 - Advantages and Problems
- Public key cryptography

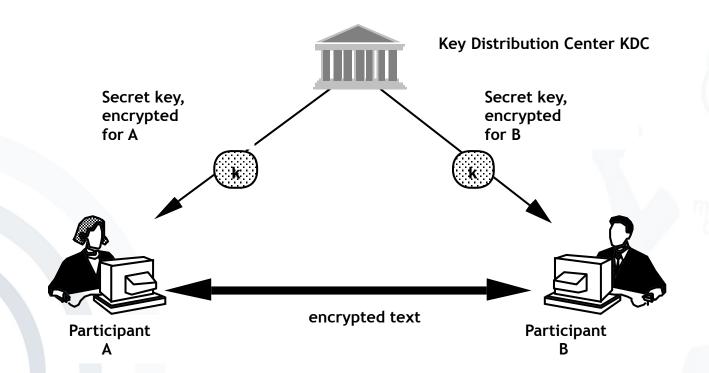


Symmetric Encryption

Advantage: Algorithms are very fast


Algorithm	Performance*
RC6	78 ms
SERPENT	95 ms
IDEA	170 ms
MARS	80 ms
TWOFISH	100 ms
DES-ede	250 ms
RIJNDEAL (AES)	65 ms

^{*} Encryption of 1 MB on a Pentium 2.8 GHz, using the FlexiProvider Java)


A Possible Solution

Key Management in Symmetric Encoding Systems

- One key per communication pair is necessary.
- Secure agreement and transfer are necessary.
- A center for key distribution is possible but this party then knows all secret keys!

"Anybody who asserts that a problem is readily solved by encryption, understands neither encryption nor the problem."

(Roger Needham / Butler Lampson)

[The Marshall Symposium: Address Roger Needham, May 29, 1998, Rackham School of Graduate Studies, University of Michigan www.si.umich.edu/marshall/docs/p201.htm] [Ra2004] 44

- [Bi2005] Matt Bishop: Introduction to Computer Security. Boston: Addison Wesley, 2005. pp. 97-113
- [Ne2003] Roger Needham: Computer security? Philosophical Transactions of the Royal Society, Series A, Mathematical, Physical and Engineering Sciences, 361, 2003, pp. 1549-1555; reprinted pp. 319-326 in Andrew Herbert and Karen Spärck Jones: Computer systems: Theory, Technology, and Applications, New York, Springer, 2004
- [Ra2004] Brian Randell: Brief Encounters; Pp. 229-235 in: Andrew Herbert, Karen Spärck Jones: Computer Systems: Theory, Technology, and Applications; New York, Springer 2004