

Lecture 10

Design of Mobile Applications

& Services: HCI Issues

Mobile Business II (SS 2017)

Prof. Dr. Kai Rannenberg

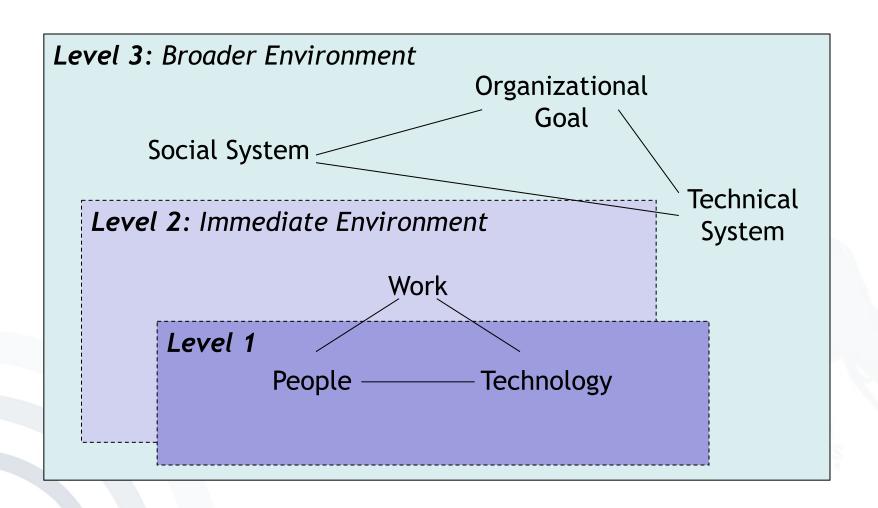
Deutsche Telekom Chair of Mobile Business & Multilateral Security Goethe University Frankfurt a. M.

- Introduction to HCI
- Mobile Interaction Styles
- Mobile Interaction Design
 - Understanding Users
 - Developing Prototype Designs
 - Evaluation
- Example of Enhanced App Store

HCI | Definition

"Human-computer interaction is a discipline concerned with the design, evaluation and implementation of interactive computing systems for human use and with the study of major phenomena surrounding them."

[Hewett et al. 1992]


"Human-computer interaction is the scientific study of the interaction between people, computers, and the work

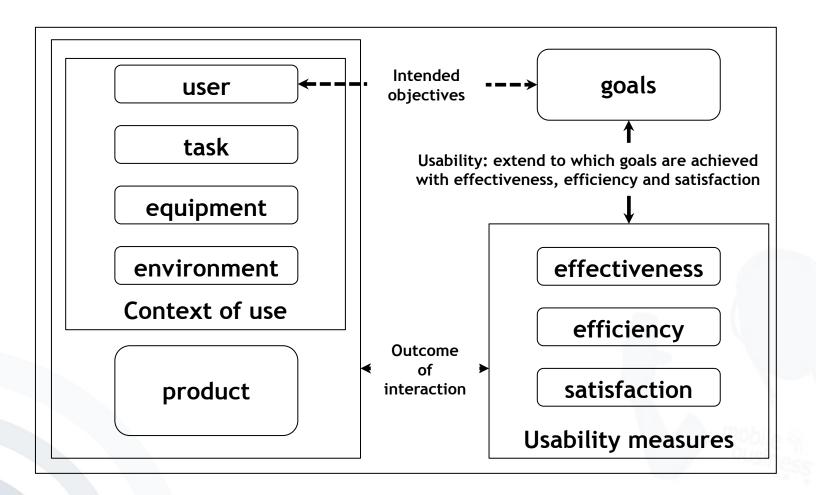
environment."

[BeardPeterson1988]

Focus of HCI

Definition of Usability

Usability is the "extent to which a product can be used by specified users to achieve specified goals with effectiveness, efficiency and satisfaction in a specified context of use."



Elements of Usability Definition

- effectiveness: Accuracy and completeness with which users achieve specified goals.
- efficiency: Resources expended in relation to the accuracy and completeness with which users achieve goals.
- satisfaction: Freedom from discomfort, and positive attitudes towards the use of the product.
- context of use: Users, tasks, equipment (hardware, software and materials), and the physical and social environments in which a product is used.
- user: Person who interacts with the product.
- goal: Intended outcome.
- task: Activities required to achieve a goal.
- product: Part of the equipment (hardware, software and materials) for which usability is to be specified or evaluated.

Usability Framework

- Introduction to HCI
- Mobile Interaction Styles
- Mobile Interaction Design
 - Understanding Users
 - Developing Prototype Designs
 - Evaluation
- Example of Enhanced App Store

Mobile Interaction Styles

The interaction between users and mobile devices is multidimensional.

- Text entry
- Speech input
- Menu navigation
- MultiTouch
- Earcons
- Metaphors

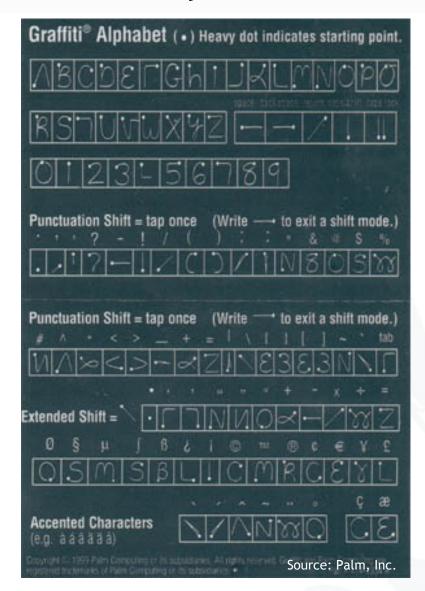
Mobile Interaction Styles Text Entry

Possible interaction via text entry:

- Keyboard entry
- Touch screen
 - Recognition of handwriting
 - Palm-Graffiti
 - Virtual keyboard
 - Swype
- Tegic T9
- Octave
- •

Mobile Interaction Styles Text Entry - Keyboard

- Text entry via classic keyboard solution.
- For higher mobility, keyboards become foldable and virtual.



Adaptation of a traditional text entry concept

Mobile Interaction Styles Text Entry - Touch Screen

- Handwriting recognition software
- Artificial script, based on upper-case characters
- Can be drawn blindly with a stylus on a touch-sensitive panel

mobile nobile susiness

Mobile Interaction Styles

business Text Entry - Touch Screen - Virtual keyboard

- Virtual keyboard on the screen
- Can be used with a stylus or with fingers

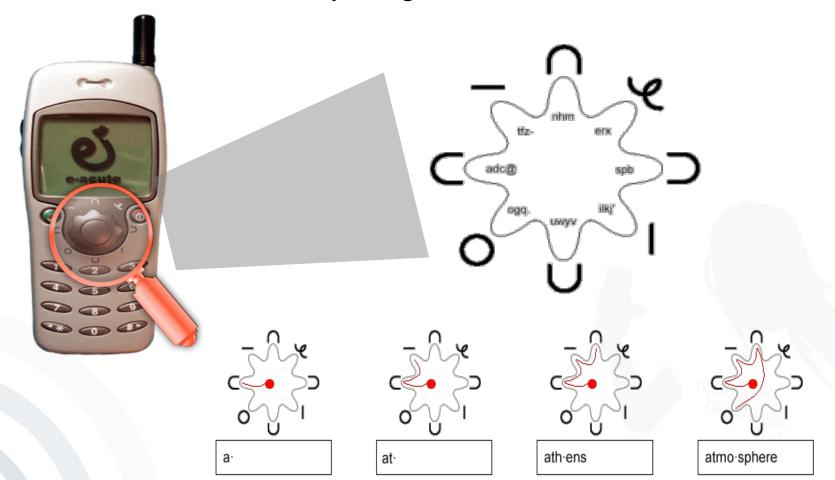
Source: HTC, Inc.

Mobile Interaction Styles Text Entry - Swype

- Swype is an input method for touch screens developed by Swype Inc.
- Available on Samsung, HTC, and also on Android and Symbian.
- Three major components: An input path analyzer, word search engine with corresponding database, and a manufacturer customizable interface.
- Available on >40 languages.

Mobile Interaction Styles Text Entry - Tegic Communications T9

- T9 (*Text on 9 keys*) is a predictive text technology developed by Tegic Communications.
- Widely used by: LG, Samsung, Nokia,
 Siemens, Sony Ericsson, Sanyo
- Uses a dictionary of words, which is used to look up all the possible words, corresponding to the sequence of keys pressed.
- Available in 27 languages



Source: www.t9.com

Mobile Interaction Styles Text Entry - Octave

Text can be entered via key navigation

Mobile Interaction Styles Speech Input

- Speech input relies on speech recognition technologies used by the mobile application.
 - Speaker-dependent
 Recognition technologies "learns"
 from a set of sample words spoken by
 the user (system training).
 - Speaker-independent
 Pre-defined vocabulary that has been set up by a large number of speech samples.

Mobile Interaction Styles Menu Navigation

- Mobile phone applications usually have a hierarchically structured navigation menu providing a list of menu choices.
- Menu hierarchies are often not self-explanatory (switching costs for users).
- Long menu lists can overload the users' short-term memory.

connect your memory card to a computer

You can use a cable connection to access your phone's memory card with a PC.

Note: When your phone is connected to a computer, you can only access the memory card through the computer.

On your phone:

Disconnect the cable from your phone, if it is connected, then press $\stackrel{•}{•} > 8\%$ Settings

> Connection > USB Settings > Default Connection

> Memory Card.

This directs the USB connection to your memory card.

Source: Motorola

Mobile Interaction Styles Touch Screen - Multi-touch

- Input by using gestures
- Up to three (or more) fingers simultaneously

Mobile Interaction Styles Earcons

 Earcons are abstract musical tones that produce sound messages to represent parts of an interface.

- Event-driven:
 - Incoming text messages
 - Alarm clock
 - **.**..

Menus augmented with earcons can support user navigation.

Mobile Interaction Styles Metaphors

🏈 Menu

Options

Exit

- Interface metaphors work by applying prior knowledge from a familiar to a new domain.
- Goal: Reducing people's perception of the complexity of the device used.

[Love2005]

Source: Nokia

- Introduction to HCI
- Mobile Interaction Styles
- Mobile Interaction Design
 - Understanding Users
 - Developing Prototype Designs
 - Evaluation
- Example of Enhanced App Store

Mobile Interaction Design

Main activities of effective interaction design

Understanding users

(Capabilities and limitations)

Developing prototype designs

(Demonstration of proposed interaction design)

Evaluation

(Identification of strengths and weaknesses of a design)

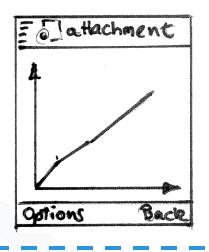
- Introduction to HCI
- Mobile Interaction Styles
- Mobile Interaction Design
 - Understanding Users
 - Developing Prototype Designs
 - Evaluation
- Example of Enhanced App Store

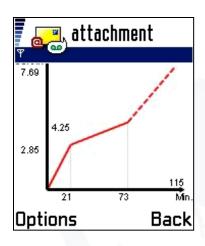
Mobile Interaction Design Understanding Users | 1

- For an effective interaction design, it is necessary to understand potential users of a system.
- Possible methodologies
 - Field studies (observe and probe a particular group in situations of interest)
 - Laboratory experiments (observe and probe a particular group within a controlled environment)
 - Direct questionnaire (e.g. to validate impressions and interpretations from the field)

Mobile Interaction Design Understanding Users | 2

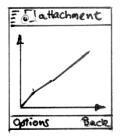
- The user group needs to have a significant impact on the design process.
- User-centered service design can significantly affect the user's perception of mobile devices and services.
- Examples of user characteristics:
 - Spatial ability: dealing with spatial relations and visualization of spatial tasks
 - Verbal ability: comprehend spoken or written words
 - Working memory:
 limited capacity of short-term memory
 - Previous experience:
 user's experience with an actual interface used




- Introduction to HCI
- Mobile Interaction Styles
- Mobile Interaction Design
 - Understanding Users
 - Developing Prototype Designs
 - Evaluation
- Example of Enhanced App Store

Mobile Interaction Design Developing Prototype Designs | 1

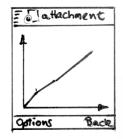
- HCI-Prototypes are built in order to express a design idea as quickly as possible.
- One can differentiate how closely a prototype resembles the appearance of the final product.



Low-fidelity

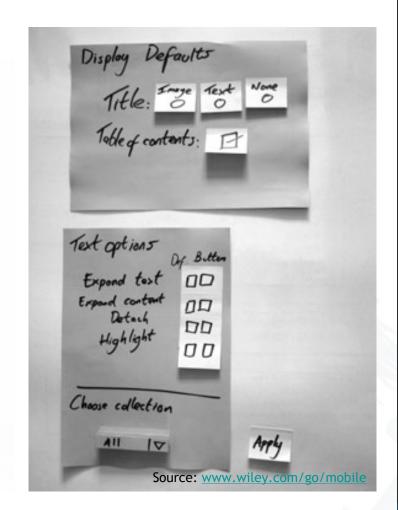
High-fidelity

Mobile Interaction Design Developing Prototype Designs | 2

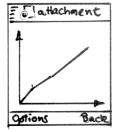

Low-fidelity

The prototype uses materials different to those in the final incarnation.

- Check for inconsistency
- Give a common specification for the design team
- Afford reflection
- Check interaction scenarios



Mobile Interaction Design Low-Fidelity Prototype Designs | 1


Basic Layouts

Title: O O
Table of contents IT
Text Options Pefault Button Expand Text [] [] Expand Content [] [] Detach [] [] Highlight [] []
Choose collection Apply

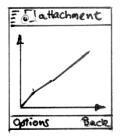
Mobile Interaction Design Low-Fidelity Prototype Designs | 2

Self-Checking

Building a low-fidelity prototype for testing the feasibility of

ideas

Take pictures


Choose a picture

Get location via GPS or manual input

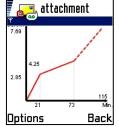
Cancel

Mobile Interaction Design Low-Fidelity Prototype Designs | 3

Interaction prototyping

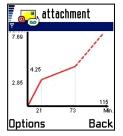
Building a low-fidelity prototype for considering how someone will interact with the device

Example:


- 1. Phonebook
- 2. Messages
- 3. Tools
- 4. Configuration

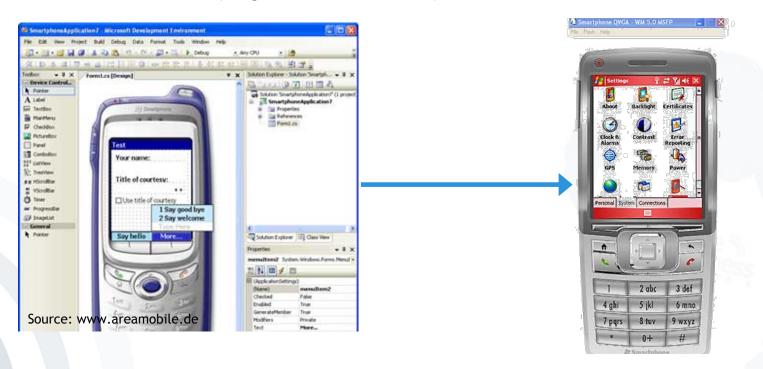
- 4.1 Personalize
- 4.2 Ring Styles
- 4.3 Headset
- 4.4 Network

Mobile Interaction Design High-Fidelity Prototype Designs | 1

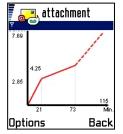


High-fidelity

- The results of a low-fidelity prototyping process comprise a list of features that should be tested with representatives of the target group.
- High-fidelity prototype designs provide the functionality to evaluate critical tasks and functionalities that should be supported by the final product.
- Therefore, most critical features must be identified to be included in the prototype design.



Mobile Interaction Design High-Fidelity Prototype Designs | 2


PC-based prototype designs...

... can be developed by using standard programming environments (e.g. Visual Studio) and software emulators

Mobile Interaction Design High-Fidelity Prototype Designs | 3

Platform-specific prototype designs

... can provide a proof-of-concept and can be used for evaluations

Take pictures

Choose a picture

Get location via GPS or manual input

Mobile Interaction Design Key Issues in HCI Prototyping

Туре	Advantages	Disadvantages
Low-fidelity	 Less time Lower costs Evaluate multiple concepts Useful for communication Address screen layout issues 	 Little use for usability test Navigation and flow limitation Facilitator driven Poor detail in specification
High-fidelity	 Partial functionality Interactive User-driven Clearly defined navigation scheme Use for exploration and test Marketing tool 	 Creation time-consuming Inefficient for proof-of-concept Blinds users for major representational flaws Users may think prototype is 'real'

- Introduction to HCI
- Mobile Interaction Styles
- Mobile Interaction Design
 - Understanding Users
 - Developing Prototype Designs
 - Evaluation
- Example of Enhanced App Store

Why evaluation?

- Understanding how users will use the design in the real world,
- Comparing different prototype designs,
- Assessing whether the product to be developed meets usability requirements, and
- Ensuring that the product conforms to industry standards.

- The evaluation of HCI prototype designs can be based on different methodologies addressing different aspects, e.g.:
 - Direct observation
 - Interviews
 - Questionnaires
 - Experiments
 - •

Direct observation

Observe or video users how they use the HCI design in order to check, for e.g.:

- the intuitive and correctly usage of design by the users,
- ability of users to manage pre-defined tasks.
 - Conducted by: End-Users
 - Equipment: Interactive prototype
 - Results: Qualitative
 - Where: Controlled setting

Interviews

- Often made in conjunction with observations
- Provision of direct feedback from the users
- Observed problems can be addressed

- Conducted by: End-Users
- **Equipment**: Interactive prototype
- Results: Qualitative
- Where: Controlled setting

Questionnaires

- Tool for gathering users' opinions
- Tool for comparing different designs by using quality scales
- Example: I was able to enter text easily
 Disagree [1] [2] [3] [4] [5] Agree
 - Conducted by: End-Users
 - Equipment: Interactive prototype & Questionnaire
 - Results: Qualitative & Quantitative
 - Where: Controlled setting

Experiments

- Usually hypothesis-based
 (e.g. Navigation within application A is quicker than within application B.)
- Results provide insight on how much 'better' a certain design is
 - Conducted by: End-Users
 - Equipment: Interactive prototype
 - Results: Qualitative
 - Where: Controlled setting

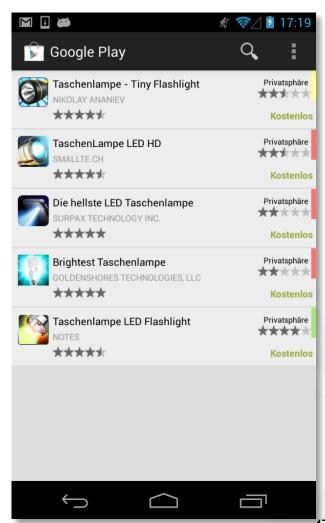
- Design shortcomings of products can have different reasons, such as:
 - A lack of user-based evaluation during the design process,
 - Perceived financial costs of better design,
 - An overemphasis on technology over purpose.

- Introduction to HCI
- Mobile Interaction Styles
- Mobile Interaction Design
 - Understanding Users
 - Developing Prototype Designs
 - Evaluation
- Example of Enhanced App Store

Privacy Enhanced App Store Motivation

- Enhance privacy transparency and privacy awareness in app markets.
- ✓ Foster informed choice of apps.
- ✓ Integrate more effective privacy risk indicators into app markets.
- Develop and evaluate proof of concept for Google's Play Store.

[BalRannenberg 2014, Bal et al. 2015]



Privacy Enhanced App Store Privacy Indicators

1. Search results enhanced with privacy score.

2. App description enhanced with visual privacy information.

3. App description enhanced with textual privacy information.

Privacy Enhanced App Store Privacy Indicators

1. Search results enhanced with privacy score.

2. App description enhanced with visual privacy information.

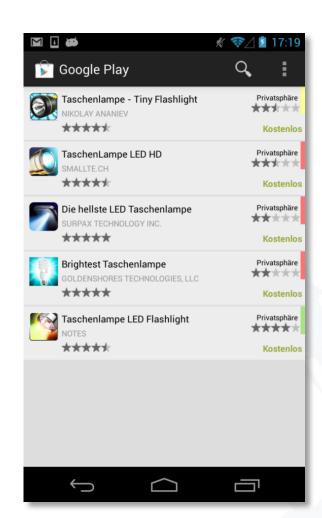
3. App description enhanced with textual privacy information.

Privacy Enhanced App Store Privacy Indicators

1. Search results enhanced with privacy score.

2. App description enhanced with privacy information.

3. App description enhanced with textual privacy information.



Privacy Enhanced App Store Conclusion

- Result of an experimental user study: better privacy risk communication leads to:
 - increased privacy and risk awareness,
 - better comprehension of risks,
 - better comparison of apps,
 - privacy as a stronger decision factor,
 - safer app choices.

References

[Bal et al. 2015] Gökhan Bal, Kai Rannenberg, Jason Hong: Styx: Privacy risk communication for the Android smartphone platform based on apps' data-access behavior patterns; Pp. 187-202 in Computers and Security, Volume 53, September 2015, doi:10.1016/j.cose.2015.04.004

[BalRannenberg 2014] Gökhan Bal, Kai Rannenberg: User Control Mechanisms for Privacy Protection Should Go Hand in Hand with Privacy-Consequence Information: The Case of Smartphone Apps", W3C Workshop on Privacy and User-Centric Controls, Berlin, 2014-11-20/21, https://m-

chair.de/images/documents/publications/Position_Paper_W3C_WPUCC_Bal__Rannenberg.pdf

[BeardPeterson1988] Beard, J.W. and Peterson, T.O. A Taxonomy for the Study of Human Factors in Management Information Systems. Human Factors in Management Information Systems, Greenwich, CT, Ablex Publ., pp. 7-26, 1988.

[Blattner et al. 1989] Blattner, M.M., Sumikawa, D.A., and Greenberg, R.M. Earcons and Icons: Their Structure and Common Design Principles, Human-Computer Interaction (4:1), pp. 11-44, 1989.

[Fritsch et al. 2005] Fritsch, L.; Stefan, K. and Grohmann, A. Mobile Gemeinschaften im E-Government: Bürger-Verwaltungs-Partnerschaft als Mittel zur Kosteneffizienz und Effizienz bei öffentlichen Aufgaben am Beispiel der Verkehrskontrolle. Proceedings of the Workshop on Gemeinschaften in Neuen Medien. Dresden, 2005.

[Hewett et al. 1992] Hewett, T., Baecker, R., Card, S., Carey, T., Gasen, J., Mantei, M., Perlman, G., Strong, G., and Verplank, W. ACM SIGCHI Curricula for Human-Computer Interaction. ACM, 1992.

[ISO9241] ISO 9241-11:1998. Ergonomic requirements for office work with usual display terminals (VDTs) - Part 11: Guidance on usability. 2008

[JonesMarsden2006] Jones, M. and Marsden, G. Mobile Interaction Design. John Wiley & Sons, 2006.

[Love2005] Love, S. Understanding Mobile Human-Computer Interaction. Information Systems Series, Elsevier, 2005.

[Preece et al. 1994] Preece, J., Rogers, Y., Sharp, H., Benyon, D., Holland, S., Carey, T. Human Computer Interaction. Addison-Wesley, 1994.